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“Advanced Algorithm Development and Implementation of Enclosed Operation Detection and Shutoff for 

Portable Gasoline-Powered Generators”1 
 
 
 The attached report titled, “Advanced Algorithm Development and Implementation of Enclosed Operation 
Detection and Shutoff for Portable Gasoline-Powered Generators,” presents the findings of research conducted by 
the University of Alabama, College of Engineering, (UA) under a contract agreement with the U.S. Consumer 
Product Safety Commission (CPSC).2  This research was performed in support of CPSC’s advance notice of 
proposed rulemaking (ANPR) to address the carbon monoxide (CO) poisoning hazard associated with the use of 
portable generators.3  
 
 Under this agreement and a prior one between CPSC and UA4, staff tasked UA to develop and program an 
algorithm into the engine control unit (ECU) of an electronically controlled, closed loop, fuel-injected prototype, 
low CO-emission portable generator that would sense when the generator was operating in an enclosed space and 
automatically shut off the generator before creating an unacceptable CO exposure.  Under both agreements, staff 
specified that the algorithm should not rely on any additional sensors other than those already integral to the 
existing engine management system. As such, this would serve as a tamper-proof, supplementary approach to 
reducing further the risk of CO poisoning associated with the prototype generator, without adding any additional 
component cost or introducing concerns about CO sensor durability and reliability.  Shortcomings with the first 
algorithm, developed and tested under the initial agreement, were later discovered during subsequent testing 
conducted by CPSC staff and National Institute of Standards and Technology (NIST).5  This rendered the first 
algorithm unacceptable.  The initial algorithm occasionally would shut off the generator when it was operated 
outdoors and, under certain circumstances, would not shut off the generator when it was operated indoors.  Even 
with the identified limitations of the first algorithm, however, the algorithm demonstrated its capability to shut off 
the engine when the algorithm’s logic rendered a shutoff decision. In addition, data acquired during testing of the 
first algorithm provided information for another approach which consisted of using data from the ECU to estimate 
the oxygen concentration in the intake air.  This led to a second contract with UA (referenced in footnote 2) for 
development of a second algorithm based on this new approach. 
 
 The second algorithm is described in this report.  UA developed and implemented the algorithm for initial 
testing on a modular ECU development platform and then later implemented it on a “black box” ECU, adapted in 
place of the modular ECU, on the same generator.  UA performed tests on the generator configured with each 
ECU in both indoor and outdoor locations, while both constant and varying load profiles were applied to the 
generator.  In the scenarios tested (seven indoor tests and five outdoor tests), the generator did not shut off when 
operated outdoors and did shut off when operated indoors.   

                                                      
1 This report has not been reviewed or approved by, and does not necessarily represent the views of, the Commission. 
2 Contract HHSP233201100012C 
3  Portable Generators; Advance Notice of Proposed Rulemaking; Request for Comments and Information, Federal Register, 
71 FR 74472, December 12, 2006, available online at http://www.gpo.gov/fdsys/pkg/FR-2006-12-12/pdf/E6-21131.pdf.   
4 Contract CPSC‐S‐06‐0079    
5 Report for task to develop first algorithm, performed under Contract CPSC-S-06-0079: “Algorithm Development for 
Enclosed Operation Detection and Shutoff of a Prototype Low Carbon Monoxide Emission Portable Gasoline‐Powered 
Generator, Additional Volume to Final Project Report”, accessible as TAB F in the staff report Technology Demonstration 
of Prototype Low Carbon Monoxide Emission Portable Generator, available online at 
http://www.cpsc.gov/PageFiles/129846/portgen.pdf. 

http://www.gpo.gov/fdsys/pkg/FR-2006-12-12/pdf/E6-21131.pdf
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1. INTRODUCTION 

This document serves as the final technical report for the project entitled Advanced Algorithm 
Development and Implementation of Enclosed Operation Detection and Shutoff for Portable Gasoline-
Powered Generators.1 This project was performed by the University of Alabama (UA) for the U.S. 
Consumer Product Safety Commission (CPSC).  The project is a follow-on project to contract CPSC-S-06-
0079, which directed UA to, among other tasks, develop, test, and install an automatic engine shutoff 
(or shutdown which may be used synonymously) feature on a prototype generator, constructed to 
operate with the same stoichiometric fuel control strategy and catalyst as the durability-tested 
prototype described in [1].  The purpose of this feature is to shut the engine off before the generator 
creates an unacceptable carbon monoxide (CO) exposure environment in the possible event that, when 
the prototype generator is operated in an oxygen depleted environment, its ability to meet its target CO 
emission rate is compromised.  CPSC specifically requested that the algorithm be programmed into the 
prototype generator’s engine control unit (ECU), and that it have the ability to be enabled and disabled 
for testing purposes.  CPSC also specifically directed that the algorithm rely only on data already existing 
in the ECU and not use any additional sensors so as to serve as a supplementary means of further 
reducing the risk of CO poisoning associated with the prototype generator without adding any additional 
component cost.   
 
In the original work, prior to the contract reported on herein, the objective was to develop the 
algorithm, the new prototype, and to test at UA in a highly confined space.  Data from the ECU was 
collected and analyzed.  The purpose of the initial testing was to identify trends within the collected 
data that could be utilized for detecting confined space operation.  These analyses resulted in the 
development of an initial algorithm that is summarized in references [1, 6, 7].  The algorithm was tested 
through post-processing the ECU data collected and then implemented in the ECU software by the 
manufacturer.  While the resulting detection method was completely heuristic in nature and made no 
provision for shutoff at particular O2 or CO concentrations, the initial results from testing the algorithm 
at UA were promising.  The prototype, with the initial algorithm programmed into the ECU, was then 
tested in a test facility [2, 3, 6, 17] at the National Institute for Standards and Technology (NIST), where 
the developed algorithm was refined through variation of programmable parameters.  However, three 
specific issues sporadically surfaced from additional testing at NIST: 

1. With sudden and significant load changes, as well as under constant load (though less 
frequently), the algorithm would sometimes cause the engine to shut off when operated 
unconfined in the outdoors. 

2. Rarely would the algorithm cause the engine to shut off in an enclosed environment with 
extremely light loads. 

3. Rarely, but even with high load, the algorithm would not shut the engine off when operating in 
an enclosed environment. 

                                                      
1 This project was the subject of a Master’s of Science thesis, developed, written, and defended by Joshua Spiegel, 
who was a graduate research assistant working on this project. His thesis, entitled “Small Engine Oxygen Depletion 
Shutoff Algorithm and Implementation,” was accepted by the University of Alabama in 2012 [16]. 
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Even with these limitations, the initial algorithm resulted in a proof of concept in demonstrating its 
capability to shut off the engine when the algorithm rendered a shutoff decision.  This previous work 
also provided valuable information for another possible advanced approach to a shutoff algorithm. 
The more advanced approach was addressed in the final technical report of the previous contract [7].  
Based upon the substantial improvement it appeared to offer, the present contract was put in place.  
This present approach is based on employing data from the ECU to estimate the O2 concentration in the 
intake air and developing an index for the shutoff decision that is based upon a calculation that 
estimates the predicted formation of carboxyhemoglobin (COHb), which is a useful, though inexact, 
approximation of acute CO uptake by the body, and of acute symptom severity [14].  The R&D strategy 
employed moved from executing the algorithm on the existing ECU to implementation in an advanced 
modular ECU development platform that is commercially available.  The development platform is 
described in this report and it operates within an industry standard graphical user interface providing 
full programming flexibility in a real-time manner.  Changes, revisions, and updates were possible 
without requiring documentation to the vendor or without contracts having to be issued.  Furthermore, 
processor speed and memory availability was eliminated as a limitation. 
 
A secondary goal of this project was to deliver a functional generator set with the algorithm in place.  
This required that the ECU functionality be migrated from the modular development platform to a black 
box system.  A commercially available programmable engine controller was selected as the final 
implementation platform.  This system offered the ability to include all ECU and shutdown algorithm 
functions in a closed box without the need for extensive off-board hardware and processing capability.  
However, data logging and reporting as well as “on-the-fly” adjustment was no longer an option.  Thus, 
the ECU system on the final prototype is much like that which would be found on a commercially 
available generator unit.   
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2. Engine Management System 

Prior to initiating discussion on implementation details and experimental procedures, it is important to 
note that certain trade names (e.g., Nova, Labview, Matlab, etc.) or company products are mentioned 
throughout this document to adequately specify the experimental procedures and equipment used.  In 
no case does such identification imply recommendation or endorsement by the University of Alabama 
staff, nor does it imply that the equipment is the best available for the purpose.   
 
The gasoline powered engine’s engine management system (EMS) is intended for the management of 
multiple engine tasks such as engine position tracking and synchronization of engine fuel and spark 
timing [4].  The modular development platform-based EMS for this project was to utilize a setup that 
would parallel the setup in the previous project, as described in [6, 7].  Because the new oxygen 
depletion shutdown algorithm was initially based on post-processing of data from the previous project’s 
EMS, the basic management criteria were to remain constant, including the engine operation and 
control principles.  Specifically, the EMS setup is comprised of the host personal computer (PC), an 
upgraded ECU, an electronic fuel injector (EFI), a fuel pump and pressure regulator, and an ignition coil, 
along with multiple sensors for continuous engine operation monitoring.  The host PC is used for human 
interfacing with the ECU to monitor and adjust engine specific parameters.  The ECU is an electronic 
based system with multiple inputs and multiple outputs used to enhance engine performance.  
Specifically, the ECU is used to execute pre-programed calculations based on data provided from engine 
sensors and is responsible for controlling associated outputs to achieve desired engine operation.  The 
list, shown below in Table 2.1, details the multiple inputs and outputs to the modular ECU, and this list is 
similar to the I/O list from the previous system [6]. 
 

Table 2.1:  Input and output signals of the modular ECU. 

Signal Input / Output Type 
Oil Temperature Input Analog 
Intake Air Temperature Input Analog 
Manifold Absolute Pressure Input Analog 
Heated Oxygen Sensor Input Analog 
Battery Voltage Input Analog 
Crank Position Input Pulse 
Fuel Injector Output Digital 
Spark Coil Output Digital 

 
Each of the individual inputs and outputs to the ECU serve a specific role in the overall engine control 
scheme.  The two ECU outputs, for the fuel injector and spark coil, together serve a common purpose of 
permitting fuel delivery and spark timing for fuel ignition through means of the EFI, fuel pump, fuel 
pressure regulator, and ignition coil.  The heated oxygen sensor is used to detect oxygen content in the 
exhaust gas and determine whether the fuel mixture is rich or lean through means of a corresponding 
voltage signal.  The oil temperature sensor is responsible for monitoring the temperature of the engine’s 
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oil.  The intake air temperature (IAT) sensor is responsible for monitoring the temperature of the air 
entering the engine.  These two sensors, oil temperature and IAT, provide signals that contribute to 
various calculations and look-up tables for parameters which effect engine operation.  The crank 
position sensor is a variable reluctance (VR) sensor, used in conjunction with a 24 tooth (minus 1) crank 
wheel, responsible for defining engine speed (RPM) and a crank position reference point.  By 
establishing a crank position reference point, essential engine parameters such as manifold absolute 
pressure (MAP), fuel delivery, and spark timing can be evaluated.  The crank position sensor and 24 
tooth crank wheel are shown in Figure 2.1 [6, 7]. 
 

 
Figure 2.1:  Crank position sensor and 24 tooth crank wheel. 

 
Via a variable reluctance sensor, a pulse train voltage signal is produced by the 24 tooth crank wheel by 
exciting the crank position sensor that has magnitude proportional to engine speed.  A missing tooth, or 
gap, on the crank wheel is used as a reference point by the crank position sensor for determining several 
useful parameters.  First, the missing tooth is used to establish a reference point for determining when 
the piston is at top dead center (TDC).  In the present strategy, the positioning of the piston at TDC is 
inferred by the falling edge of the 9th tooth after the gap on the 24 tooth crank wheel, due to its specific 
alignment with respect to the engine.  In addition, the missing tooth and crankshaft synchronization 
system are used to ensure that, at minimum pressure on the engine’s intake stroke, the MAP read crank 
angle can be determined.  Due to MAP signal fluctuation, caused by the single-cylinder engine, a MAP 
read crank angle algorithm is required for establishing a common MAP determination point.  The MAP 
read crank angle is a function of speed and load, which requires a calibration look-up table.  Since MAP 
is the primary variable used to indicate load, MAP read crank angle, sampled once per two engine 
revolutions at minimum pressure, is based upon MAP itself [6, 7].  A block diagram, shown in Figure 2.2, 
illustrates the complete layout and flow of all the EMS components including the host PC, real-time ECU, 
a connected chassis with four engine control modules, and multiple inputs/outputs to the generator.  All 
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bold lines indicate a voltage signal and all dashed lines indicate signals to or from engine control 
modules harbored in the ECU chassis.  Additional signals are labeled accordingly. 
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The EMS chassis currently contains four operational modules for engine control and one 
instrumentation module, not included in the EMS diagram, for additional data acquisition.  The five 
modules harbored in the chassis include the following: A/D Combo Module Kit, Port Fuel Injector (PFI) 
Driver Module Kit, Spark Driver Module Kit, Oxygen Sensor Module Kit, and Bidirectional Digital I/O 
Module.  The A/D Combo Module Kit is responsible for interfacing between any analog or digital inputs 
on the generator, such as those sensors which indicate operating conditions.  Specifically, the A/D 
Combo Module Kit converts the generator oil temperature, intake air temperature, crank position 
sensor, and MAP sensor from analog to digital signals, which can be monitored and utilized in separate 
calculations.  The PFI Driver Module Kit is used for driving low-impedance and high-impedance PFIs as 
well as generator solenoid valves.  Specifically, the main task of the PFI Driver Module Kit is to control 
the generator’s fuel pump and fuel injector.  The Spark Driver Module Kit is responsible for controlling 
the spark coil, ensuring precise timing for correct engine synchronization.  The Oxygen Sensor Module 
Kit is responsible for interfacing with wide-band and narrow-band oxygen sensors.  Specifically, the 
Oxygen Sensor Module Kit is used for engine tuning, closed-loop engine control, and data acquisition.  
The Bidirectional Digital I/O Module was acquired, in addition to the four previous modules needed for 
engine control, in order to output digital signals to an analog oscilloscope.  This module allowed for 
rapid controller and engine debugging, without having to modify and recompile the associated source 
code [4]. 

 
Each of the previously described control modules are supported by graphical virtual instruments (VIs), 
which are programs running in a programming environment that is an industry standard that contains 
the source code used to operate and control the associated hardware [11].  In addition, the system must 
utilize calibration software, necessary for establishing communications between the real-time kernel 
and the host VI by means of managing all necessary data points and lookup tables.  The host VI is used 
to monitor and control any desired system input or output in a real-time manner.  Open-loop and 
closed-loop engine tuning for stoichiometric engine operation are also performed in the host VI, in real-
time, which makes it vital to the new ECU platform. 
 
During the course of the previous contract, which involved the development of a low CO emissions 
prototype generator and safety shutdown feature, two separate commercially available engine 
controllers, which were user configurable, but not user programmable, were utilized.  A now obsolete 
controller, the IMEC-168 ECU, was used for initial calibration, testing, and developing the low CO 
emissions prototype generator.  This particular ECU, used with a 3-way catalyst, aided in the reduction 
of CO emissions from a portable gasoline powered generator by 97% [6].  The MT05 ECU was 
subsequently used specifically for work completed on the previous oxygen depletion shutdown 
algorithm, with the same gasoline powered generator already modified for low CO emissions. 
 
In an effort to improve enclosed operation detection and shutoff of the existing setup, the new modular 
ECU was then introduced to the previously used generator rated at a continuous output of 7 kW.  A 
photograph depicts the portable gasoline powered generator equipped with EMS in Figure 2.3.  As a 
replacement to the previous controller, the advantageous modular ECU allows for more real-time 
engine adjustments, as well as modifications and additions to the ECU.  Replacing the ECU was 
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necessary, and fortunately, the spark coil and all sensors used with the previous MT05 ECU were able to 
be reused with the upgraded modular ECU. 
 

 
Figure 2.3:  Modular EMS equipped generator.  Modules housed in grey electrical box and connected to 

generator hardware via custom wiring harness. 
 

2.1. Description of Theoretical ECU Operation  
 
Two different engine controllers have been used throughout the course of the two contracts with CPSC 
for the purpose of developing an oxygen depletion safety shutdown feature; however, the fundamental 
bases upon which they operate are the same, as the modular ECU utilizes a similar speed-density 
method as the previous MT05.  A parallel deterministic approach and set of principle equations are 
used, as described in [6, 7, 8], which utilize the primary inputs of engine speed and a load variable, 
based on MAP, for ultimately controlling the mass of fuel delivered.  The speed-density method, based 
on the ideal gas law, is used to calculate the quantity of air entering the engine, thus delivering a 
stoichiometric fuel mixture to the engine.  The ideal gas law is shown in Equation 2.1 where (P) is 
pressure, (V) is volume, (m) is mass, (R) is the air gas constant, and (T) is temperature.  The actual mass 
of air entering the cylinder divided by the theoretical mass of air entering the cylinder is defined as the 
volumetric efficiency, shown in Equation 2.2.  As seen in Equation 2.2, the theoretical mass of air 
entering the cylinder is equal to the product of the air density entering the cylinder (ρair) and the engine 
displacement volume (VD).  As part of the calibration procedure, the volumetric efficiency is determined 
as a function of engine speed and load and entered into a lookup table for use by the algorithm as part 
of the air flow calculation [6, 7]. 
 
 TRmVP *** =  (2.1) 
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Because the air is an ideal gas, a relationship with the ideal gas law can be developed.  Specifically, by 
combining Equation 2.1 with the fact that air density is defined by air mass divided by air volume, the 
manifold air density can be calculated in terms of the specific pressure, temperature, and air gas 
constant.  The manifold density is directly proportional to the manifold pressure (Pman) and inversely 
proportional to the manifold temperature (Tman), as shown in Equation 2.3 [6, 7, 8]. 
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Using the combination of Equations 2.2 and 2.3, equating air density entering the cylinder to manifold 
air density, the actual mass of air entering the cylinder is calculated, as shown in Equation 2.4, with 
respect to the specific manifold conditions.  As described in [6], a unique relationship between Equation 
2.3 and the current EMS can be drawn by the following parameters: Pman = MAP (kPa), VD = volume of 
the cylinder, 389 (cm3), R = air gas constant, 0.286 (kJ/[kg*K]), and Tman = charge air temperature (CAT) 
(°C).  The CAT is a useful calculation that estimates the air temperature entering the cylinder and is 
based on experimental correlation which is dependent upon an RPM and MAP based coefficient lookup 
table, IAT, and oil temperature (CLTS). 
 

 
man

Dman
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The calculated mass of air entering the cylinder is used by the ECU to determine the desired mass of fuel 
to be supplied to the engine, shown in Equation 2.5, based on the desired AFR set point.  The desired 
AFR set point for this project is 14.6 to 1, stoichiometric for gasoline powered engines, for every 
operating condition.  Equation 2.5 can be combined with equation 2.4 to express the desired mass of 
fuel to be supplied to the engine (per cycle) in terms of parameters measured as the engine operates 
(Pman, Tman), obtained from a calibration lookup table (VE, AFR) as a function of speed and load, and 
constant values (VD, R), as shown in Equation 2.6 [6, 7]. 
 

 
)(desiredAFR

mm air
fuel =  (2.5) 
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The ECU attempts to deliver the desired fuel mass (per cycle) by controlling the fuel injector opening 
pulse width.  For insurance of expected fuel delivery, an experiment was conducted to estimate the 
injector flow rate (IFR), which was determined to be approximately 1.34 (g/s).  Specifically, the IFR is 
used by the ECU, in conjunction with various transient fuel parameters, to calculate the injector fuel 



 9 

pulse width (FPW), thus ensuring that the correct mass flow rate of fuel is delivered.  A fuel pressure 
regulator is used to maintain constant pressure across the fuel injector’s exit nozzle, ensuring that the 
fuel injector pulse width is proportional to the amount of fuel it supplies.  By including some variable of 
the fuel injector opening and closing times, the FPW needed to achieve the fuel mass calculated in (2.6) 
can be determined by injector flow rate parameters.  The mass of fuel delivered, shown in Equation 2.7, 
demonstrates a relationship to the IFR, the FPW time (tFPW), and the FPW time correction (tC), used to 
account for time needed to fully open the injector and close the injector.  Furthermore, by equating the 
mass of fuel delivered in (2.7) to the desired mass of fuel in (2.6), the FPW time needed to supply the 
desired mass of fuel can be calculated, as shown in Equation 2.8 [6,7]. 
 
 ( )CFPWdelfuel ttIFRm −= *,  (2.7) 

 C
man

Dman
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IFRdesiredAFRTR
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In order to control the engine around a stoichiometric fuel mixture, the same closed-loop control (CLC) 
algorithm from the MT05 controller was used in the newly acquired modular ECU.  Initially, the system 
runs in the open-loop mode until temperature and run time thresholds have been achieved, which 
activates CLC.  These particular thresholds were extracted from the previous system; however, the new 
platform allows for CLC to be initiated at the user’s discretion if a scenario arises which calls for CLC to 
be activated sooner or later than normal.  An oxygen sensor, placed in the exhaust stream, acts as a 
feedback signal for the closed-loop control algorithm, sensing either a fuel rich or lean mixture.  
Accordingly, the calculated fuel pulse width time is adjusted so the oxygen signal constantly switches 
between rich and lean, ensuring the fuel mixture is always near stoichiometric.  A proportional-integral 
(PI) control method was used to ensure that the AFR constantly oscillated around stoichiometric.  The 
proportional component of the controller is responsible for the size of the FPW adjustment, which is 
determined by the magnitude of the difference between the actual and desired conditions.  Essentially, 
the proportional factor uses the oxygen sensor feedback to constantly vary the fuel mixture between 
rich and lean.  The integral component is responsible for ensuring that an event, or particular value, will 
eventually occur by constantly adjusting until the feedback signal surpasses a set value.  Therefore, the 
integral factor increases for a lean fuel mixture and decreases for a rich fuel mixture, ensuring that the 
controller maintains an AFR near 14.6 to 1.  Finally, the proportional and integral corrections are applied 
to the FPW after each calculation, and the control process is subsequently repeated.  Gain coefficients 
must be adjusted for both the proportional and integral components, located in a lookup table based on 
engine speed and load, in order to ensure quick and accurate corrections are made by the controller 
adjustments [6, 7].  The new ECU is modified to emulate engine operation and control of the previous 
MT05 ECU.  However, the subsequent subsections discuss how each controller remains unique. 
 
2.2. MT05 ECU Description 
 
As described in [6], the previously used MT05 ECU, shown in Figure 2.4, was a replacement, and 
upgrade, for the obsolete IMEC-168 ECU.  The MT05 ECU provided a slimmer design, which allowed for 
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the controller to be mounted inside of the generator frame, helping to eliminate unintended damage.  
Also, the MT05 ECU utilized an external MAP sensor, unlike its predecessor, in order to increase the 
MAP signal consistency from the IMEC-168 system by eliminating the 300 mm MAP tube and being 
placed directly above the engine’s existing MAP port.  Allowing for a more reliable MAP signal was vital, 
as it is used for calculating many engine control parameters. 
 

 
Figure 2.4:  MT05 ECU, used in previous work, mounted inside the generator frame [6]. 

 
The MT05 ECU possessed a 20 MHz microprocessor with 512 bytes of EEPROM memory space and 256 
Kbytes of flash EEPROM memory space.  A controller area network (CAN) was used as communication 
link between the ECU and laptop computer.  The associated software contained a calibration toolbox, 
which was used for real-time data logging, data playback, and exporting data.  As previously mentioned, 
the MT05 system utilized an external MAP sensor, as well as a heated oxygen sensor.  Also, an upgrade 
on the MT05 ECU was the ability to modify the look-up table axes for improved engine performance [6, 
9].  As the MT05 ECU served as a substantial upgrade from the IMEC-168 ECU, it still lacked the ability to 
be modified as an open-source controller.  Upon completion of the previous oxygen depletion shutdown 
algorithm, based on post-processing of data, a submission to the manufacturer was required for 
implementation.  This eliminated the possibility of shutdown algorithm modification based on current 
test data. 
 
2.3.  Modular ECU Description 
 
The newly acquired modular EMS controller, shown in Figure 2.5, is based on a National Instruments 
Compact RIO (reconfigurable input / output) NI cRIO-9022 which allows for real-time deterministic 
control, data logging, and a wide variety of engine management tasks such as tracking engine position 
and engine synchronization of fuel delivery and spark control.  These ECU operations are based on field 
programmable gate arrays (FPGA) [4, 5].  Figure 2.5 also depicts the attached chassis with four control 
modules and one NI module for additional data acquisition.  The primary advantage of the modular ECU 
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is that it is a mostly open-source controller that provides the ability for modifications and additions to 
the existing ECU source code through the LabVIEW-based software which accompanies each individual 
control module present in the chassis.  In addition, the modular ECU still possessed the main upgrade 
features of the previous MT05 ECU such as an external MAP sensor and the ability to modify the look-up 
table axes for increased resolution and engine performance.  One notable difference from the previous 
MT05 ECU is the modular system’s location with respect to the generator itself.  Due to the system’s 
larger size, it cannot be mounted directly on the generator and must be placed inside of a protective 
box, as shown in Figure 2.5, to limit exposure to potentially harmful elements and prevent any 
accidental damage.  , It is worth noting that the finished product for engine operation, control, and new 
safety shutdown algorithm were implemented on a smaller, less complex, and less expensive controller, 
intended only for use after all desired modifications had been finalized.  This allowed for ease of ECU 
modifications with the Modular system, while final implantation on a smaller controller allowed for the 
final product to be mounted on the generator. 
 

 
Figure 2.5:  Modular ECU components mounted in protective electrical box. 

 
The modular ECU system possesses a 533 MHz processor with 2 GB of nonvolatile storage and 256 
Mbytes of dynamic random-access memory (DRAM).  The real-time kernel operates at 1 kHz, while the 
FPGA kernel operates at 40 MHz for more time-critical engine operations.  The controller itself has 
several different external connection capabilities such as multiple Ethernet ports for remote interfacing 
with the host PC and file servers, a USB port for hosting external memory devices, and RS232 serial port 
connection which could be used as to communicate between the ECU and peripherals.  The controller is 
designed to function for long periods of time, at low power consumption, and a wide operating 
temperature range [5]. 
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The modular EMS and ECU was modified in hardware and software to emulate that of the previous 
MT05 controller as closely as practically possible.  The modular ECU was originally designed for a multi-
cylinder engine, while the generator used for this project utilized a single-cylinder engine.  Therefore, 
due to the ECU’s ability to be reconfigured, it was modified in order to accommodate a single-cylinder 
engine.  In order to begin this modification, the associated code in the modular ECU was altered in the 
way of disabling the three additional cylinders needed for four-cylinder operation.  In addition, the 
engine design warranted the previously discussed MAP read crank angle algorithm to be implemented 
for determining MAP at a common point, the minimum pressure read once every two engine 
revolutions.  Due to the generator’s absence of a cam sensor, a pseudo cam signal algorithm was 
implemented in the ECU, using LabVIEW code, which would emulate that of a physical cam signal.  A 
physical cam sensor produces a true signal synchronized with the camshaft which can be combined with 
the crank position sensor to establish crank position relative to the complete four-stroke engine cycle.  
One important calculation that was performed by the previous MT05 controller, missing in the modular 
ECU, was the CAT calculation.  Therefore, necessary additions were made to the modular ECU software 
to perform the CAT calculation.  CAT is absolutely vital because of the fact that oxygen estimation and 
the emergency engine shutdown algorithm, discussed in the following chapter, are dependent upon the 
CAT estimation.  The final modification to the modular ECU was the implementation of the previously 
discussed CLC algorithm used in the previous MT05 controller to control the AFR to stoichiometric. 
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3. ENCLOSED OPERATION DETECTION STRATEGY 

During work done in this project’s previous phase, an oxygen depletion shutdown algorithm was 
developed that, although demonstrated a proof of concept, possessed shortcomings which needed to 
be addressed.  Specifically, the previous shutdown algorithm was only a heuristically based model which 
did not address the air chemistry directly related to an oxygen depleted environment.  Also, the 
previous algorithm sometimes produced false-positive shutdowns with sudden and significant load 
changes.  Finally, there were occasions where it would not shutoff when operated in an enclosed 
environment, particularly with extremely light loads applied . 
 
In an effort to improve the oxygen depletion safety shutdown feature, an advanced algorithm was 
devised by attempting to estimate the oxygen percentage in a gasoline portable generator’s intake air 
without the use of any external emission sensors.  While several numerical estimation methods proved 
unsuccessful, a hybrid analytical and heuristic strategy demonstrated some promising results.  The 
general purpose of this strategy was to be able to generate a curve that matched the oxygen data 
measured throughout testing at the NIST test facility.  It was determined that by utilizing the gas 
constant for air, the actual gas constant at the generator’s air intake, expected fuel-air ratio, and actual 
fuel-air ratio, a useful relationship could be derived to estimate the amount of oxygen in the air intake 
stream if the small injector opening or closing times were neglected.  In the ECU, the base FPW is 
calculated by using the gas constant for air and a desired air-fuel mixture ratio.  Then, through control 
system feedback, the actual gas constant at the generator’s air intake could be calculated based on the 
actual FPW corrected by the controller, also known as the final FPW.  Also, the actual fuel-air ratio could 
be determined once the control system corrections are made.  Through some mathematical 
simplification, the ratios of the actual intake air gas constant to the gas constant for air and expected 
fuel-air ratio to actual fuel-air ratio are used to provide a useful FPW ratio for oxygen estimation, as 
shown in Equation 3.1 [7]. 
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This ratio proved useful for developing a strategy to estimate the oxygen percentage in the generator’s 
intake air stream.  In fact, a measure of control system correction for oxygen deficiency in the intake gas 
stream is described by this ratio of base FPW to final FPW; it was further observed that the ratio 
described in Equation 3.1, in conjunction with the generator’s calculated CAT, could be used as a 
parameter in a linear oxygen estimation equation.  In particular, this constant value (C) used for linear 
estimation is described by the ratio shown in Equation 3.2.  In addition, it was determined that a basis of 
this constant value was able to more accurately estimate oxygen once the CAT stabilized [7]. 
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Once the relationship in (3.2) was developed, an oxygen percentage estimation equation was 
heuristically developed from the measured oxygen data obtained during seven tests, listed in Table 3.1, 
that were conducted at NIST.  These tests were conducted during the first phase of this work as part of a 
larger series of tests performed to assess the efficacy of the prototype design, with and without the 
catalyst, in reducing the CO poisoning hazard by measuring the CO and O2 concentrations in the garage 
as well as all rooms in the house while the generator was operating in the garage with a cyclic load 
applied [3].  In these tests, the prototoype generator designated SO1  was operated with the algorithm 
disabled, which means it would run until the test operator manually shut the engine off.  Four of the 
seven tests were conducted with the garage bay door fully closed, causing oxygen depletion to occur in 
the garage.   

Table 3.1 
NIST scenarios used for initial oxygen estimation algorithm [7]. 

Test ID Catalyst Installed in Muffler Position of Garage Bay Door 
N Yes Closed 
T Yes Open 24” 
Z No Closed 
W Yes Closed 
AH No Closed 
U Yes Open 24” 
V No Open 24” 

 
The resulting linear relationship, shown in Equation 3.3, was initially used to estimate the oxygen 
percentage in the generator’s intake air stream. 
 
 18175% 2 += CO  (3.3) 

  
All of the estimations developed herein are based on the characterization of the specific generator used 
in this study interacting in various indoor and outdoor environments.  Had another model generator 
been used, a different set of equations may have resulted.  The point is to illustrate that these 
estimation equations represent one example of how a shutoff algorithm can be devised. 
 
This initial oxygen estimation algorithm, developed for purposes of an advanced shutdown algorithm, 
showed some promising results in generating a curve to estimate the oxygen content measured during 
NIST testing.  However, due to the fact that the linear estimation in Equation 3.3 was developed by 
inspection, it was decided that the oxygen percentage levels could be calculated more accurately if new 
linear coefficients, other than 175 and 18, were mathematically derived.  Also, because of the fact that 
all seven test sets used to initially develop the new algorithm were conducted indoors under a cyclic 
load profile, it was decided to include three indoor constant load tests and five outdoor constant load 
tests since similar tests with the initial shutdown algorithm revealed some of its limitations that were 
described in Section 1.  The processes of developing the new optimum linear estimation coefficients, 
based on the fifteen tests listed in Table 3.2, are presented in Appendix A, and the final O2 estimation 
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equation is shown in equation (3.4).  The criteria for generator shutdown decisions and off-line 
validation thereof are described in the following report sections. 
 

Table 3.2:  All fifteen NIST test scenarios used for final oxygen estimation algorithm. 
Test ID Date Load Profile Environment Garage Door 
N 04/01/2010 Cyclic Indoors Closed 
T 04/14/2010 Cyclic Indoors Open 24” 
Z 05/05/2010 Cyclic Indoors Closed 
W 04/29/2010 Cyclic Indoors Closed 
AH 05/13/2010 Cyclic Indoors Closed 
U 04/22/2010 Cyclic Indoors Open 24” 
V 04/23/2010 Cyclic Indoors Open 24” 
AK 05/19/2010 5500 W Indoors Fully Open 
AS 06/10/2010 5500 W Indoors Closed 
AV 07/09/2010 500 W Indoors Closed 
CA 09/10/2010 2500 W Outdoors 
CB 09/10/2010 1500 W Outdoors 
CC 09/10/2010 3000 W Outdoors 
CD 09/10/2010 4500 W Outdoors 
CE 09/10/2010 5500 W Outdoors 

 
 
 96.1655.201% 2 += CO  (3.4) 

 
3.1.  Generator Shutdown Decision 
 
Although the previously described oxygen estimation algorithm will detect an enclosed and hazardous 
operating environment when significant oxygen depletion is detected, an effort was made to use the 
oxygen estimation algorithm in determining the approximate COHb level2, which could be used for 
generator shutdown criteria, because it was determined to offer some indication of CO in the way of 
magnitude and length of exposure without having to estimate CO itself.  It was determined through 
observation that the rate of oxygen decrease showed some direct correlation with the rate of COHb 
increase.  One point of interest that arose from this correlation was an individual area calculation of 
oxygen estimation, for every two sampling points, once it dropped below ambient air, or approximately 
21% oxygen.  Trapezoidal integration was used to calculate such individual areas between oxygen 
estimation and a 21% threshold value, as shown in Equation 3.5.  In (3.5) d(t) is the difference between 
oxygen estimation and 21% at any time (t), d(t-1) is the previous difference, and telap is the time elapsed 
between the two difference measurements.  Because area is determined based on current and previous 
difference measurements, at least two data points are needed before an area can be calculated.  

                                                      
2 As calculated per an equation provided on page 67 of ref [15]. 
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Through further observation, it was theorized that the oxygen estimation area (below 21%) could 
possibly be used in a linear equation, shown in Equation 3.6, to estimate COHb percentage. 
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=  (3.5) 

 43)(% kkACOHb i +=       (3.6) 
 
A least squares curve fitting method was employed in an effort to estimate COHb using the improved 
oxygen estimation; however, this particular method proved unsuccessful in providing an accurate 
estimate of COHb due to large variations in COHb percentage scales across the wide range of testing 
scenarios.  Therefore, coefficients k3 and k4 were developed heuristically to provide a trend-oriented 
estimate of COHb, shown in Equation 3.7, and verified through visual inspection.  This trend-oriented 
COHb estimate proved somewhat successful in numerical estimation for small percentages COHb.  
Although accurate numerical estimation of larger COHb percentages could not be achieved, along with 
smaller percentages, it was determined to be unnecessary due to the fact that the generator would 
have already triggered the safety shutdown feature by the time such percentages were reached.  The 
trend-oriented COHb estimate (in green) is plotted with the COHb calculation [15], as shown in Figure 
3.1.  It is worth noting that a less efficient first-order lag filter was used in the trend-oriented COHb 
estimation in anticipation of physical implementation, which would not provide such an efficient filter.  
Also, for outdoor tests (CA through CE), measured CO emissions were assumed to be 0 parts per million 
(ppm) and COHb was assumed to be 1%.  The same test set order was used, as described in the oxygen 
estimation development, for concatenating all fifteen test cases. 

 

 45.272.10)(% += iACOHb  (3.7) 
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Figure 3.1:  Calculated COHb levels and the COHb index computed from O2 estimate (calc filt) for 

multiple tests. 
 
For the purpose of this project, a 10% COHb threshold was theorized to indicate indoor operation and 
an oxygen depleted environment.  From observation of Figure 3.1, it was determined that the trend-
oriented COHb estimate exceeded 10% in all indoor tests which should, in fact, shutdown; furthermore, 
it was observed that the trend-oriented COHb estimate did not exceed 10% in any outdoor test 
environment, which should not trigger a shutdown.  Therefore, the new safety shutdown feature would 
trigger if the trend-oriented COHb estimate exceeded 10% constantly for 20 s.  A 20 s threshold was 
chosen to ensure that the generator did not trigger a false shutoff in the event that a transient spike in 
COHb estimate exceeded 10% for a short period of time. 
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Clearly, the COHb calculation is not an accurate representation of the actual COHb.  However, it is an 
efficient index to base a shutdown decision upon when concerned with COHb levels.  Hence, in this 
report, when the term “COHb estimate” is employed, the reader should interpret this to mean estimate 
up to 10% and strictly as an index otherwise.  A pseudo code for the oxygen depletion shutdown 
algorithm is shown below: 

 
-Oxygen Estimation 
 O2_calc = (Base Pulse Width / Final Pulse Width / Charge Air Temp.)*k1+k2 
 k1=201.55, k2=16.96 
-Calculating Individual Area Measurements under 21% Oxygen Threshold 
 If CLC activated and O2_calc < 21% (must have at least 2 points): 
  Ind. Area = (Time Elap)*[(21-Current O2_calc) + (21-Previous O2_calc)]/2 
 If O2_calc > 21%: 

Ind. Area = 0 
-COHb Index Calculation & Shutdown Decision 
 COHb_calc = (Ind. Area)*k3+k4, k3=10.72, k4=2.45 
 If COHb_calc > 10%: 

total_time counter starts 
 If COHb_calc > 10% for less than 20 seconds: 

total_time counter reset to zero 
If COHb_calc > 10% constantly (total_time >20 seconds): 

Generator shutdown triggered 
 

 
3.2. Off-Line Validation of Oxygen Depletion Shutdown Algorithm 
 
In an effort to conduct an off-line validation of the newly derived oxygen depletion safety shutdown 
algorithm, simulations were performed for all fifteen test cases to analyze when an actual shutoff would 
occur, as determined by the algorithm, versus ideal shutoff, based on the COHb calculation of the NIST 
test data.  After simulating each individual test set, key parameters observed at actual and ideal 
shutdown were identified as the following: shutdown times, COHb percentages, measured CO / 
maximum CO, and estimated oxygen.  The key parameters identified during simulations and off-line 
validations are summarized in charts, shown in Figures 3.2 through 3.9, for those test sets where 
shutdown should eventually occur.  It was observed during simulations that, although the trend-
oriented COHb estimate may trigger a shutdown slightly early or slightly late in some cases, an actual 
shutdown is only triggered when warranted and possible false-positive shutdown triggers are eliminated 
during outdoor test cases.   
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Figure 3.2: Oxygen depletion algorithm shutdown time evaluated through simulation vs. ideal shutdown 

times based on COHb calculation at 10%. 

 
Figure 3.3:  COHb index percentage, COHb calculated per EPA, and measured CO ppm at simulated 

shutdown. 
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Figure 3.4:  Measured CO emissions at actual shutdown time from simulation and at the ideal shutdown 

time based on a 10% COHb level computed per EPA. 

 
Figure 3.5:  Oxygen concentration estimates at actual shutdown time from simulation and at ideal 

shutdown times based on 10% COHb computed per EPA. 
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Figure 3.6:  Measured CO concentration at actual shutdown time from simulation and at ideal shutdown 

time based on 10% COHb computed per EPA.  The maxiumum CO concentration at the end of the test 
run is also indicated. 

 
Figure 3.7:  Maximum CO  concentration for all indoor test cases. 
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Figure 3.8:  COHb index and actual COHb computed per EPA at shutdown time determined by simulation 

along with the maximum COHb per EPA at the end of the test run. 

 
Figure 3.9:  Maximum COHb (EPA calculation) for all indoor test cases. 
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4. IMPLEMENTATION ON THE MODULAR PLATFORM 

For work done on this project’s phase, a modular based ECU was acquired to serve as a replacement to 
the formerly used MT05 ECU.  As previously mentioned, the proprietary nature of the MT05 ECU 
eliminated the ability for modifications or additions to the existing source code.  Although both 
controllers accomplished similar tasks in the way of engine management and control, the main 
advantage of the modular ECU was its almost completely open-source nature.  Access to the ECU source 
code allowed for necessary additions and modifications to be made in the way of engine operation, 
control, and shutdown.  This access also provided the user with the ability to implement or modify any 
engine specific tasks or algorithms, which conserved time by not having to out-source the job to the 
ECU’s company of origin.  In addition, multiple instances arose which challenged the initial strategy of 
implementation; however, the mostly open-source nature of the ECU allowed for flexibility and ease of 
implementation.  Finally, access to the majority of the ECU source code would permit changes in the 
oxygen depletion shutdown algorithm, if necessary, following post-processing of physical test data.  A 
description of changes made to the oxygen depletion shutdown algorithm and ECU source code for ease 
of implementation, as well as a summary of the final implementation process, is provided in the 
subsequent sections. 
 
4.1.  Alternate Equivalent Oxygen Estimation 
 
During the course of implementing the engine operation and control scheme into the newly acquired 
ECU source code, base VE and final VE were used in the CLC method, as opposed to base FPW and final 
FPW.  This utilization of VE was based on the fact that it allowed for a simplistic engine tuning strategy, 
as the primary variable used in open-loop and CLC regulation, because of its ability to be easily altered in 
a calibration lookup table based on RPM and MAP.  Conversely, the newly devised oxygen estimation 
shutdown algorithm was dependent on the ratio of base FPW to final FPW.  This presented an initial 
challenge to the implementation strategy of the new oxygen estimation equation because immediate 
access to base FPW and final FPW could not be established.  However, because VE is defining air 
quantity entering the cylinder, the quotient of base VE (VE before CLC correction) and final VE (VE after 
CLC correction) should provide a ratio which defines the magnitude of controller compensation for 
oxygen deficiency in the generator’s intake air stream.  Likewise, because FPW is defining fuel quantity 
entering the cylinder, the ratio of base FPW (FPW before CLC correction) to final FPW (FPW after CLC 
correction) indicates how much the control system has to compensate for the oxygen deficit in the 
intake air stream, as described in Chapter 3 and [7].  Therefore, the two ratios utilizing VE and FPW are 
essentially a measure of identical quantities and can be concluded to be equivalent, as shown in 
Equation 4.1.  Furthermore, substituting this ratio equivalence from (4.1) into the generator dependent 
variable (C) from (3.2), used in the newly derived oxygen estimation equation, it can be redefined in 
terms in terms of base VE and final VE, as shown in Equation 4.2. 
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4.2.  Alternative Implementation Strategy for Shutdown Algorithm 
 
Upon beginning the implementation process for the oxygen depletion shutdown algorithm, based on a 
trend-oriented COHb estimate, another scenario arose which challenged the initial implementation 
strategy in LabVIEW based source code.  The initial implementation strategy for the shutdown algorithm 
was dependent upon individual area calculations, based on oxygen estimation difference measurements 
below a 21% threshold.  It was determined that this particular strategy would require some data 
buffering because of the fact that previous difference measurements must be considered in the 
individual area calculations.  Although this initial implementation strategy could have been 
accomplished, significant time was not devoted to completing it when a new, equally valid, method for 
producing a trend-oriented COHb estimate showed promise, which involved no data buffering. 
 
The initial shutdown algorithm implementation strategy, which relied on individual area calculations for 
producing a trend-oriented COHb estimate, exhibited an example of a piecewise linear function.  
Specifically, by using trapezoidal integration, this function was comprised of a set of data where each 
point essentially represented the average of the current and previous difference measurements 
between oxygen estimation percentage and 21%.  An illustration of the trapezoids used to calculate 
individual area, formed by individual difference measurements, and the resulting plot of area 
calculations from trapezoidal integration is shown in Figure 4.1. 
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Figure 4.1:  Individual area calculations (piecewise linear function). 

 
 A newly devised alternative shutdown algorithm implementation strategy would provide an equally 
valid trend-oriented COHb estimate without the need to buffer data in the LabVIEW source code 
implementation.  Specifically, the new implementation strategy would involve using only the individual 
difference measurements, as opposed to the individual area calculations, to develop a new trend-
oriented COHb estimate with minimal deviation from its original.  This particular type of strategy, 
differing from the original, demonstrated an example of a piecewise constant function by exhibiting a 
data set where each point represented only the current difference measurement between oxygen 
estimation percentage and 21%; therefore, no previous data is considered.  A general illustration of how 
the new COHb trend-oriented estimate is constructed, based on individual difference measurements, is 
shown in Figure 4.2.  It is worth noting that the difference measurements used in Figures 4.1 and 4.2 
were kept constant in order to exploit the variations in the two different types of functions. 
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Figure 4.2:  Individual difference measurements (piecewise constant function). 

 
In order to begin such a transformation, the general COHb estimate equation in (3.7) was revised to 
include the individual difference measurements (di), instead of individual area measurements, and new 
heuristically developed constant coefficients were established to compensate for the change in strategy.  
The newly developed trend-oriented COHb estimate equation is shown in Equation 4.3. 
 

 43.214.6)(% += inew dCOHb  (4.3) 
 
Because of the fact that the new constant coefficients in (4.3) were developed heuristically, it was of 
particular interest to approximately verify, through mathematical representation, that the change in 
strategy did, in fact, render an equally valid method for producing a trend-oriented COHb estimate.  
First, the original trend-oriented COHb estimate from (3.7) was revisited in Equation 4.4 and a general 
equation representing the new trend-oriented COHb estimate in (4.3) was defined, as shown in Equation 
4.5. 
 

 
45.272.10)(% += iorig ACOHb

 (4.4) 

 newnew
kkdCOHb inew 43)(% +=

 (4.5) 
 
In order to approximately verify the coefficients for a new trend-oriented COHb estimate based on 
individual difference measurements, the individual area calculation for trapezoidal integration in (3.7) is 
substituted into the original estimate in (4.4), and then subsequently approximated to the new estimate 
in (4.5), as shown in Equation 4.6. 
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Because the resulting equation in (4.6) consisted of two unknown coefficients and the heuristically 
developed new k4 of 2.43 in (4.5) was comparable to its counterpart value of 2.45 in (4.4), a reduced 
approximation equation was achieved by subtracting each value from both sides of the equation, as 
shown in Equation 4.7. 
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Additional assumptions must be made in order to complete the approximate mathematical verification 
of the new trend-oriented COHb model.  Because such a large amount of data was sampled by the ECU 
during NIST tests, data files were truncated by eliminating 9 data points between computations [7].  
Through observation, it was determined that this truncation led to a sampling rate which allowed telap to 
be equal to approximately 0.5 s.  Furthermore, it was determined that, because samples were taken so 
often, even after skipping 9 data points, the change between the current difference measurement d(t) 
and previous difference measurement d(t-1) was minimal; therefore, the assumption was made that, 
from point-to-point, the two difference measurements in (4.7) were approximately equal.  Using this 
fact to combine the two difference measurements in (4.7) into one individual difference measurement, 
multiplied by two, along with the previous approximation of telap=0.5 s, a reduced equation was 
obtained, as shown in Equation 4.8. 
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Finally, each side of the equation in (4.8) can be divided by di, which yields the fact that, in order for the 
new strategy of using only individual difference measurements to create an equally valid trend-oriented 
COHb estimate, the new k3 coefficient must be approximately equal to 10.72 (the original k3 coefficient) 
divided by 2, or 5.36.  Because of the fact that the new k3 had already been heuristically developed to be 
6.14, which is comparable to that of the theoretically produced 5.36, the approximate mathematical 
validation was deemed successful.  It is worth noting that the previously described Figure 4.2 is only a 
general representation of the newly devised implementation strategy by way of using difference 
measurements, with no consideration of changing the constant coefficients necessary in achieving a 
similar function as in Figure 4.1; however, it was verified by inspection, in addition to the approximate 
mathematical validation, that the two trend-oriented COHb estimates were, in fact, equally valid 
implementation methods.  By slightly altering the shutdown algorithm implementation strategy, 
appropriate modifications to the ECU LabVIEW source code must be considered.  The new shutdown 
algorithm implementation, which proved equally valid in producing a trend-oriented COHb estimate, 
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eliminated the need for data buffering, and allowed for ease of implementation is illustrated in the 
pseudo code below: 
 
-Oxygen Estimation 
 O2_calc = (Base Pulse Width / Final Pulse Width / Charge Air Temp.)*k1+k2 
 k1=201.55, k2=16.96 
-Calculating Individual Difference Measurements under 21% Oxygen Threshold 
 If CLC activated and O2_calc < 21%: 
  Individual Difference = 21-Current O2_calc 
 If O2_calc > 21%: 

Individual Difference = 0 
-COHb Index Calculation & Shutdown Decision 
 COHb_calc = (Individual Difference)*k3+k4, k3=6.14, k4=2.43 
 If COHb_calc > 10%: 

total_time counter starts 
 If COHb_calc > 10% for less than 20 seconds: 

total_time counter reset to zero 
If COHb_calc > 10% constantly (total_time >20 seconds): 

Generator shutdown triggered 
 
4.3.  Final Implementation of Shutdown Algorithm 
 
Once all necessary revisions had been made to the shutdown algorithm implementation strategy, final 
implementation in the ECU could commence.  Because the oxygen estimation and shutdown algorithm 
were initially developed in the MATLAB software environment, they had to be implemented using 
LabVIEW due to the nature of the ECU’s source code.  Specifically, the oxygen estimation and shutdown 
algorithms were implemented into a port fuel control subVI within the ECU source code.  The decision 
was made to implement these algorithms in the fuel control portion of the ECU source code in order to 
establish a means for terminating engine operation if the Boolean (binary, 1 or 0) shutdown signal was 
ever true.  In particular, appropriate LabVIEW code commands were used to disable the fuel injector 
pulse if the Boolean shutdown signal was present.  The final ECU implementation of the oxygen 
estimation algorithm and shutdown algorithm, based on a trend-oriented COHb estimate, in LabVIEW 
code are shown in Figure 4.3 and Figure 4.4, respectively.  However, it is worth noting that both 
algorithms possess the ability to be altered, if necessary, based on post-processing of final physical test 
results. 
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CAT
Filtered

 
Figure 4.3:  Block diagram implementation of oxygen estimation algorithm in ECU (filtered O2 estimate 

passed to Figure 4.4 as input). 
 
 
 

Filtered Oxygen Estimate

Time (s)

 
Figure 4.4:  Block diagram implementation of shutdown algorithm in ECU. 
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5. ALGORITHM TESTING RESULTS 

For purposes of validating the newly devised oxygen depletion shutdown algorithm, a series of indoor 
and outdoor tests were conducted on the UA campus.  The testing setup included the EMS equipped 
generator described in Chapter 2, a variable resistive load bank, and emissions analyzer.  The individuals 
performing the tests and host computer, used for monitoring tests, were positioned inside of a campus 
laboratory, away from any potential CO emissions, for safety purposes.  The tests were performed 
immediately outdoors of this particular campus laboratory, providing immediate access if a test variable 
required altering or, in case of an emergency, the situation could be addressed promptly.  For purposes 
of performing the indoor test scenarios, a mobile trailer with an approximate volume of 1420 cubic feet 
was placed immediately outside of the campus laboratory to serve as an enclosed structure.  A 
photograph, shown in Figure 5.1, depicts the interior (on left) and exterior (on right) of the test trailer 
used to simulate an indoor environment. 
 

 
Figure 5.1:  Trailer used for indoor operation test scenarios. 

 
For outdoor testing scenarios, an area outside of the test trailer and campus laboratory was used.  The 
selectable load bank was used to tune the generator across a wide range of operating points for testing 
in both indoor and outdoor environments.  From the broad spectrum of operating modes, six particular 
loads were chosen for purposes of performing validation tests at UA, as shown in Table 5.1.  Because 
testing during this project’s previous phase, as well as tests performed at NIST, utilized a six mode 
method that was meant to replicate the Environmental Protection Agency’s (EPA’s) standardized test 
procedure for the regulation of small off road spark ignition engines rated 19 kW (25hp) or less (40 CFR 
Part 90), it was of particular interest to use the same load points as described in [6,7] for continuity. 
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Table 5.1 
Load points used for validation testing at UA. 

Mode Load (W) 
1 0 
2 500 
3 1500 
4 3500 
5 4750 
6 5500 

 
The final piece of equipment used in the setup for validation testing at UA was the emissions analyzer.  
Specifically, a weatherproof Nova 376 Series portable analyzer was appropriately calibrated for 
measuring oxygen (%) and CO (ppm) gases in the surrounding air.  The analyzer completes these 
measurements by way of electrochemical sensors with a resolution of 0.1% oxygen and 1 ppm CO [12].  
In order to achieve the most unbiased emissions data, with respect to the generator’s location, the 
attached sampling line must be placed in a central location inside of the test trailer.  Furthermore, the 
generator was positioned at the far end of the test trailer, while the emissions sampling line was 
positioned in the center of the test trailer.  It is worth noting that the Nova emissions analyzer was not 
used for outdoor testing scenarios, as the surrounding air should experience only minimal oxygen 
depletion.  Furthermore, it was assumed that the emissions in the surrounding air were comprised of 
21% oxygen and 0 ppm CO, approximately that of ambient air, for outdoor tests cases.  A photograph, 
shown in Figure 5.2, depicts the Nova emissions analyzer used throughout indoor testing. 
 

 
Figure 5.2:  Analyzer used to measure emissions in enclosed environment. 
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Tests were conducted in indoor and outdoor environments, under constant and cyclic load profiles, and 
under random load profiles.  However, all test cases included the use of a muffler catalyst due to the 
fact that the generator had already been modified for low CO emissions in the previous phase of this 
project.  For purposes of demonstrating that the oxygen estimation and shutdown algorithms 
functioned properly under constant load, a low, medium, and high load were specifically chosen from 
the load points listed in Table 5.1.  In addition, these same low, medium, and high load points were used 
to demonstrate the validity of the algorithms under cyclic loads by conducting a low-to-high load profile 
test and high-to-low load profile test.  Finally, in order to ensure that the newly developed algorithms 
did not produce any false-positive shutdowns with sudden and significant load changes, random load 
profile tests were conducted using all load points described in Table 5.1 for both, indoor and outdoor, 
environments.  Specifically, two random load profiles were generated, with each profile to be conducted 
once indoors and once outdoors.  The twelve testing scenarios conducted at UA are detailed and 
identified, accordingly, by name, as shown in Table 5.2. 
 
 

Table 5.2 
Operating conditions used for validation testing at UA. 

Test ID Load Profile Environment 
UA1 Constant (500 W) Indoors 
UA2 Constant (3000 W) Indoors 
UA3 Constant (5500 W) Indoors 
UA4 Cyclic (Low to High) Indoors 
UA5 Cyclic (High to Low) Indoors 
UA6 Random 1 (All Loads) Indoors 
UA7 Random 2 (All Loads) Indoors 
UA8 Constant (500 W) Outdoors 
UA9 Constant (3000 W) Outdoors 
UA10 Constant (5500 W) Outdoors 
UA11 Random 1 (All Loads) Outdoors 
UA12 Random 2 (All Loads) Outdoors 

 
An effort was made to maintain a testing procedure that was as consistent as possible throughout all of 
the previously described test cases.  The subsequent sections highlight the procedures used for both, 
indoor and outdoor, testing environments, the results of all twelve tests conducted, and a brief 
description of observations and conclusions drawn from analyzing the resulting test data. 
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5.1.  Indoor Testing 
 
For indoor testing, the initial step included opening both trailer doors while a large fan was used for two 
reasons: 1) to blow out any emissions remaining from the previous test, essentially cleaning the air 
within the trailer and returning it to approximately an ambient state, and 2) to speed up the cooling 
process of the generator.  The generator must be cooled back to an ambient temperature as each of the 
validation test cases, performed at UA, were conducted with a cold start.  Once ambient generator 
temperature and air chemistry were achieved, the generator was cranked and operated with open-loop 
control while the fan continued to blow out any emissions not resulting from CLC.  This process 
continued while waiting on the oxygen sensor, used for feedback, to appropriately heat for activation.  A 
time of approximately 30 s was usually needed before the oxygen sensor could begin properly 
functioning.  Upon heating of the oxygen sensor, CLC was activated, the fan was turned off, and both 
trailer doors were closed, allowing for the replication of an enclosed operating environment. 
 
During the course of indoor testing, the ECU was used to collect relevant data, in intervals of 0.5 s, which 
included the following variables: run time (s), shutdown signal (Boolean), engine speed (RPM), oil 
temperature (°C), MAP (kPa), CAT (°C), base VE, final VE, oxygen estimation (%), COHb estimation (%), 
measured oxygen (%), and measured CO (ppm).  The calculated COHb (%) per EPA in ref [15] was also 
included in the final data files; however, these calculations were completed during data post-processing 
and subsequently added to the data files.  For validation purposes, it was of particular interest to plot 
oxygen estimation (in green, from equations 3.4 and 4.2) with measured oxygen  (in blue), COHb 
estimation (in green) with COHb calculation (in blue), CO emissions, and the generator shutdown signal.  
The following plots, shown in Figure 5.3 through Figure 5.9, which were generated through post-
processing of the resultant data in the MATLAB software environment, illustrate the results collected 
from all indoor tests described in Table 5.2.  Because of the large data file sizes, 9 points were skipped 
between computations, similar to that done during the post-processing of NIST test data and 
development of the algorithms.  It is noteworthy that the COHb estimate diverges from the EPA-based 
estimate after the levels become somewhat higher.  However, this occurs after the point at which 
shutdown would happen. 
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Figure 5.3(a):  Oxygen estimation and oxygen measured for Test UA1. 

 

 
Figure 5.3(b):  COHb index and COHb calculation for Test UA1. 
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Figure 5.3(c):  Measured CO emissions for Test UA1. 

 
Figure 5.4(a):  Oxygen estimation and oxygen measured for Test UA2. 
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Figure 5.4(b):  COHb index and COHb calculation for Test UA2. 

 
Figure 5.4(c):  Measured CO emissions for Test UA2. 
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Figure 5.5(a):  Oxygen estimation and oxygen measured for Test UA3. 

 
Figure 5.5(b):  COHb index and COHb calculation for Test UA3. 
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Figure 5.5(c):  Measured CO emissions for Test UA3. 

 
Figure 5.6(a):  Oxygen estimation and oxygen measured for Test UA4. 
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Figure 5.6(b):  COHb index and COHb calculation for Test UA4. 

 
Figure 5.6(c):  Measured CO emissions for Test UA4. 
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Figure 5.7(a):  Oxygen estimation and oxygen measured for Test UA5. 

 
Figure 5.7(b):  COHb index and COHb calculation for Test UA5. 
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Figure 5.7(c):  Measured CO emissions for Test UA5. 

 
Figure 5.8(a):  Oxygen estimation and oxygen measured for Test UA6. 

0 200 400 600 800 1000 1200
0

500

1000

1500

Time (s)

CO
 (p

pm
)

CO Emissions (Cyclic Load: Low to High - Indoors)

 

 

0 200 400 600 800 1000 1200
-1

0

1

2

Sh
ut

do
wn

 S
ig

na
l (

Bo
ol

ea
n)

CO emis
Shutdown Signal

0 200 400 600 800 1000 1200 1400 1600 1800
15

16

17

18

19

20

21

22

23

24

25

%
O

2

Time (s)

 

 

0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

S
hu

td
ow

n 
S

ig
na

l (
B

oo
le

an
)

Oxygen Estimation (Random Load Profile 1 - Indoors)

O2 meas
O2 calc
Shutdown Signal



 42 

 
Figure 5.8(b):  COHb index and COHb calculation for Test UA6. 

 
Figure 5.8(c):  Measured CO emissions for Test UA6. 
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Figure 5.9(a):  Oxygen estimation and oxygen measured for Test UA7. 

 
Figure 5.9(b):  COHb index and COHb calculation for Test UA7. 
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Figure 5.9(c):  Measured CO emissions for Test UA7. 
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because the algorithm did not trigger a shutoff when tested outdoors.  The following plots, shown in 
Figure 5.10 through Figure 5.14, which were generated through post-processing of the resultant data in 
the MATLAB software environment, illustrate the results collected from all outdoor tests described in 
Table 5.2.  As was the case for indoor test plots, 9 points were skipped between computations because 
of the large data file sizes, similar to that done during the post-processing of NIST test data and 
algorithm developments. 
 
 

 
Figure 5.10(a):  Oxygen estimation and oxygen measured for Test UA8. 
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Figure 5.10(b):  COHb index and COHb calculation for Test UA8. 

 
Figure 5.11(a):  Oxygen estimation and oxygen measured for Test UA9. 
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Figure 5.11(b):  COHb index and COHb calculation for Test UA9. 

 
Figure 5.12(a):  Oxygen estimation and oxygen measured for Test UA10. 
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Figure 5.12(b):  COHb index and COHb calculation for Test UA10. 

 
Figure 5.13(a):  Oxygen estimation and oxygen measured for Test UA11. 
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Figure 5.13(b):  COHb index and COHb calculation for Test UA11. 

 
Figure 5.14(a):  Oxygen estimation and oxygen measured for Test UA12. 
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Figure 5.14(b):  COHb index and COHb calculation for Test UA12. 
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conditions.  Nonetheless, the outdoor tests should not underestimate oxygen to the extent of producing 
a false-positive shutdown and the indoor tests should not overestimate oxygen to the extent of allowing 
the generator to run too far past the ideal termination point; therefore, the oxygen estimation algorithm 
development was deemed to be a success.  With respect to the shutdown decision, it was observed that 
all COHb estimations increased quicker than that of the COHb calculation which led to an earlier 
shutdown time than originally expected; however, this was determined to be more efficient than the 
alternative of shutting down later than expected because of the dangerous environments experienced if 
such a situation arose.  It can also be observed from several tests, particularly in Tests UA2, UA3, and 
UA5, that the CO emissions tended to level out at approximately 1700 ppm.  This phenomenon was 
believed to be caused by saturation of the analyzer. 
 
In summary, the algorithm produced an oxygen estimation, as anticipated from the development phase, 
across a broad range of range of operating scenarios.  When higher levels of CO were experienced, as 
expected when operating in an enclosed structure, the algorithm subsequently signaled an oxygen 
depleted environment and shutdown the engine based on a trend oriented COHb estimate.  Also, the 
oxygen depletion shutdown algorithm proved successful when operating in an outdoor environment by 
not producing any false-positive shutdowns.  Furthermore, the random load profile tests demonstrated 
that the algorithm would not produce any nuisance shutdowns when subjected to sudden and 
significant load changes.  Based on these significant observations, along with the fact that no false-
positive shutdowns are produced outdoors, the oxygen depletion shutdown algorithm was deemed to 
be valid for the purpose at hand.  The results of all tests which should produce a generator shutdown (all 
indoor tests) are summarized in Table 5.3, where (SD) represents shutdown.  These results provide a 
validation of the shutdown algorithm by detailing the COHb estimate, COHb calculation, measured CO 
emissions, and estimated oxygen at the algorithm shutdown time and ideal shutdown time (10% COHb 
for constant 20 s).  Due to the fact that the COHb calculation did not reach 10% in all of the tests, due to 
a critically high oil temperature, some cells are labeled as not applicable (NA); however, 10% COHb 
would have been achieved if these particular tests would have been allowed to continue.  Finally, 
although the ECU allowed for source code alterations, it was decided that no modifications to the 
oxygen depletion shutdown algorithm were necessary following post-processing of validation test data. 
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Table 5.3 
Summary of validation testing results at UA. 

Test 

Actual 
SD 
Time 
(s) 

Ideal 
SD 
Time 
(s) 

COHb 
Est. (%) 
at SD 

COHb 
Calc. 
(%) at 
SD 

COHb 
Est. (%) 
at 
Ideal 
SD 

COHb 
Calc. 
(%) at 
Ideal 
SD 

CO 
(ppm) 
at SD 

CO 
(ppm) 
at 
Ideal 
SD 

O2 
Est. 
(%) 
at SD 

O2 
Est. 
(%) 
at 
Ideal 
SD 

UA1 591 NA 10.47 1.34 NA NA 227 NA 19.69 NA 
UA2 526 782 10.81 5.24 12.39 10.43 1313 1700 19.64 19.38 
UA3 484 899 11.03 3.64 14.73 10.44 907 1696 19.60 19.00 
UA4 873 NA 12.06 2.27 NA NA 496 NA 19.43 NA 
UA5 687 1100 10.39 2.69 11.70 10.43 730 1693 19.70 19.49 
UA6 770 NA 10.53 1.18 NA NA 109 NA 19.68 NA 
UA7 870 NA 11.12 1.40 NA NA 220 NA 19.59 NA 
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6. BLACK BOX ECU IMPLEMENTATION 

The algorithm performed well with the modular EMS.  However, such a system with the many external 
components is not conducive to general use and testing.  This was expected at the initiation of the work, 
and the original plans called for an implementation of a small unit that required minimal external 
hardware and no host computer.  The modular implementation was employed as a development 
platform that provided many features that would not be necessary when the algorithm was complete.  
Thus, with development and testing complete, the control method was transitioned to a much simpler 
platform.  While there was an effort to make the black box system equivalent to the modular system, 
there are differences and can be seen in the test data in the subsequent sections and graphs. 
 
The generator, equipped with the black box controller, is shown in Figure 6.1, with the significant 
hardware components labeled.  This system enables the user to disable the shutoff algorithm and run 
without this added feature while still operating with a controlled AFR and reduced CO emissions.  
Operational details can be found in Appendix B. 
 

 
Figure 6.1:  Generator equipped with black box ECU implementation. 

 
The black box implementation is based on a single chip microprocessor and associated interface 
electronics, including some custom electronics built by the investigators labeled “spark controller” in 
Figure 6.1. 
 
The significant difference between the black box implementation and the modular implementation is 
that the single chip ECU is coded in C rather than graphically.  Thus, the existing block diagrams were 

ECU Spark Coil Driver Spark Controller 
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implemented in C code for the new implementation.  Without the additional overhead, the loop closure 
time is roughly 3 times faster than that of the modular system.  This resulted in much tighter control of 
the AFR during engine operation. 
 
Indoor and outdoor tests were conducted with the black box ECU system.  Specifically, indoor tests were 
performed with 500, 3000, and 5500 W continuous loads as well as a cyclic load.  The cyclic load test 
was performed with the load switched back and forth between 500 and 5500 W in 1 minute intervals.  
The outdoor tests were performed under the same 4 conditions.  During the indoor tests, O2 and CO 
concentrations in the trailer were monitored at 1 minute intervals and recorded.  Figures 6.2 through 
6.4 show the results of the tests along with the corresponding load tests with the modular ECU 
implementation for comparison.  A comparison of shutoff times for these three constant load cases with 
both ECU implementations is presented in Table 6.1.  The cyclic load test data is presented in Figure 6.5. 
 
 

 
Figure 6.2:  500 W load indoor test with black box ECU implementation compared to same indoor load 
condition with modular ECU implementation.  The end of data on the black box curve indicates shutoff. 
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Figure 6.3:  3000 W load indoor test with black box ECU implementation compared to same indoor load 
condition with modular ECU implementation.  The end of data on the black box curve indicates shutoff. 
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Figure 6.4:  5500 W load indoor test with black box ECU implementation compared to same indoor load 
condition with modular ECU implementation.  The end of data on the black box curve indicates shutoff. 

 
 

Table 6.1 
Comparison of shutoff times for black box and modular ECU implementation. 

Load (W) Black Box Shutoff (minutes:seconds) Modular Shutoff (minutes:seconds) 
500 11:35 9:50 
3000 5:34 8:46 
5500 6:11 8:04 
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Figure 6.5:  Cyclic load indoor results.  The end of data indicates engine shutoff. 

 
All outdoor tests were executed of a period of 1 hour continuously.  Under no circumstances, that were 
a part of this study, did the generator shutdown. Thus, the black box implementation successfully 
shutdown in an enclosed environment and did not shutdown when operating outdoors. 
 
It is important to recognize that the CO concentrations recorded when operating with the black box ECU 
are considerably lower than those recorded with the modular system.  As previously mentioned, the 
loop closure rate in the black box is approximately 3 times greater than with the modular unit.  Thus, the 
closed loop AFR control is significantly faster resulting in far less CO.  Effectively, even though both 
systems control to the same average AFR, the swings about this average are significantly less with the 
black box ECU.  Thus, the degree to which the engine runs rich is drastically lower. 
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7. CONCLUSION 

This work has addressed the issues associated with the previous implementation of an algorithm to shut 
off the engine on a portable gasoline powered generator prior to creating an unacceptable carbon 
monoxide (CO) exposure environment when operated indoors.  CPSC specifically requested that the 
algorithm be programmed into the prototype generator’s engine control unit (ECU) and that it have the 
ability to be enabled and disabled for testing purposes.  CPSC also specifically directed that the 
algorithm rely only on data already existing in the ECU and not use any additional sensors. 
 
The newly developed algorithm addresses issues from the original work that surfaced during testing at 
NIST: 

1. With sudden and significant load changes, as well as under constant load (though less 
frequently), the algorithm would sometimes cause the engine to shut off when operated 
unconfined in the outdoors. 

2. Rarely would the algorithm cause the engine to shut off in an enclosed environment with 
extremely light loads. 

3. Rarely, but even with high load, the algorithm would not shut the engine off when operating in 
an enclosed environment. 

Now, with a new O2 estimation algorithm and COHb index calculation, the system is much more robust.  
During UA testing, indoor scenarios resulted in appropriate shutoff, and outdoor scenarios never 
nuisance tripped, meaning the system did not shut down during outdoor tests.  The results were 
satisfactory with both the modular ECU and black box ECU implementations.   
 
For future consideration, since the black box ECU rapid loop closure results in very tight control of the 
engine AFR, shutoff thresholds could be finely tuned for a given generator and target COHb level.  It is 
important to recognize that levels, limits, and thresholds in the new shutoff algorithm will be specifically 
dictated by the engine used and the desired shutoff criteria. 
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The two estimation coefficients, from equation 3.3, that were determined during the previous phase of 
this work, numerically 175 and 18, were heuristically developed.  It was of particular interest in the 
project’s current phase to mathematically derive new coefficients that would represent a more accurate 
linear estimation.  In addition, the test sets used in the initial oxygen estimation algorithm were 
performed under several different conditions, such as a muffler catalyst, HVAC fan, and total/partial 
indoor operation.  However, it became of particular interest to ensure that all operating conditions were 
accounted for in the way of indoor/outdoor test environment and constant/cyclic load profile to ensure 
that oxygen estimation was as accurate as possible for other operating scenarios.  Therefore, eight 
additional cases from NIST testing were included, with the seven existing cases, to result in fifteen total 
test sets which would represent a broadened range of operating conditions.  These fifteen test cases, 
used in determining the new optimal oxygen estimation coefficients, are listed in Table A.1. 
 

Table A.1:  NIST test scenarios used for final oxygen estimation algorithm. 
Test ID Date Load Profile Environment Garage Door 
N 04/01/2010 Cyclic Indoors Closed 
T 04/14/2010 Cyclic Indoors Open 24” 
Z 05/05/2010 Cyclic Indoors Closed 
W 04/29/2010 Cyclic Indoors Closed 
AH 05/13/2010 Cyclic Indoors Closed 
U 04/22/2010 Cyclic Indoors Open 24” 
V 04/23/2010 Cyclic Indoors Open 24” 
AK 05/19/2010 5500 W Indoors Fully Open 
AS 06/10/2010 5500 W Indoors Closed 
AV 07/09/2010 500 W Indoors Closed 
CA 09/10/2010 2500 W Outdoors 
CB 09/10/2010 1500 W Outdoors 
CC 09/10/2010 3000 W Outdoors 
CD 09/10/2010 4500 W Outdoors 
CE 09/10/2010 5500 W Outdoors 

 
In order to achieve the two new coefficients that would most accurately estimate the oxygen 
percentage in the generator’s intake air, for a broad spectrum of operating conditions, a linear best fit 
algorithm was employed.  To begin, the linear mathematical relationship shown in equation A.1 was 
used to generally describe the estimated oxygen percentage, where k1 and k2 would represent the new 
estimation coefficients, or estimation parameters. 
 
 212 )(% kkCO +=  (A.1) 

 
Using this generalized linear equation, an algorithm was implemented using the MATLAB software 
environment to determine new estimation parameters that would produce the most accurate oxygen 
calculation [10].  For the purpose of implementing the generalized oxygen equation (A.1) into MATLAB 
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software, the resulting matrix form of the linear estimation equation, shown in Equation A.2, was 
developed. 
 

 kCO


*][=  (A.2) 
 
In order to obtain a best fit calculation, the method of least squares [13] was performed in MATLAB by 
manipulating the generalized equation in (A.2) to solve for the estimation parameters.  The (C) matrix 
represented the generator data as described in equation A.2 and would possess dimensions of (n x 2), 
where n represents the number of samples.  Specifically, one column would contain the generator data 
from equation A.2 while the other column would act as a place-holder filled with ones.  The oxygen 
percentage variable (the O vector), would represent the measured oxygen data, in order to obtain the 
least squared error between the oxygen estimation and the actual oxygen content, and would possess 
dimensions of (n x 1).  Due to the fact that the measured oxygen data only possessed a rate of 1 sample 
per 360 seconds (s), there were a limited number of data points that could be utilized in the least 
squares curve fitting algorithm.  Solving for the new estimation parameters (the k vector), with 
dimensions of (2 x 1), and accounting for matrix multiplication dimension requirements yielded the 
matrix form equation shown in Equation A.3. 
 

 ( ) OCCCk TT 
][][][

1−
=  (A.3) 

 
Each of the fifteen previously mentioned test sets was individually analyzed using the new parameter 
estimation algorithm (least squares method) to calculate more accurate linear estimation coefficients.  
To determine the most accurate estimation parameters, several statistical factors were considered.  In 
particular, two significant factors arose while observing the calculated data curves and attempting to 
derive more accurate estimation parameters: 1) the transient period of the calculated data, and 2) the 
amount of error that exists, between the measured and calculated data, once the transient phase was 
over.  In order to derive estimation parameters which most accurately calculated the oxygen percentage 
in the intake air, for the large majority of time, data cut times were employed in increments of 360 s to 
clip the data previous to the prescribed cut time. 
 
Simply put, the cut time defines how many data points in the initial transient period of the recorded 
data for each test are discarded from consideration in the least squares estimation of the curve fit 
coefficients.  To illustrate, with random numbers for the purpose of explanation, assume the recorded 
data (pulse widths, temperatures, etc. used to compute the constant C at each instant of time) contains 
20 seconds of data at a sample rate of 2 samples/second.  This results in a total of 40 data points spaced 
0.5 seconds apart.  A cut time of 10 seconds will eliminate the first 10 seconds of data, or more 
specifically, the first 20 data points.  Therefore, the estimation coefficients would be computed using the 
final 20 data points, and the error of the estimate would be minimized over the steady-state response 
period without becoming skewed by attempting to produce an accurate estimate during the transient 
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time.  By varying the cut time, it was decided how much data needed to be discarded to reach an 
optimal estimation equation. 
 
Once the transient period of the calculated data was eliminated, a better linear curve fit was achieved 
by deriving new estimation parameters for every possible remaining cut time.  In order to statistically 
verify which cut time and new estimation parameters provided an optimum linear curve fit to the 
measured oxygen data, a sum of squared error measure was employed.  The squared error was 
calculated at every sample point, from the current cut time to the end of the test, by squaring the 
difference, or error, between estimated oxygen and measured oxygen.  Once all sample points had been 
considered, the squared errors were added together to produce a sum of squared error for each cut 
time.  Using each possible individual cut time, and each individual new set of estimation parameters, a 
new individual oxygen percentage calculation was created which spanned the test’s entire time scale.  
From each new calculation, the sum of squared error was measured, once the transient period was 
over, between the following data sets: 1) the raw oxygen calculation and measured oxygen data, and 2) 
the filtered oxygen calculation and the measured oxygen data.  Filtered oxygen calculation curves were 
generated using a first-order lag filter to reduce the large variations that existed in raw oxygen 
calculation curves. 
 
The following plots, Figures A.1 through A.15, graphically illustrate several important factors relevant to 
determining the optimum linear estimation parameters for each individual test set.  For each data set, 
part (a) of the figure illustrates the measured oxygen data (in blue), plotted along with the original 
filtered oxygen linear estimation (in green), from Equation 3.3, and the new best fit filtered oxygen 
linear estimation (in red), generated by the least squares algorithm.  Measured oxygen for outdoor 
tests, CA through CE, was assumed to be 21% oxygen, approximately that of ambient air.  The new 
estimation parameters would differ significantly between test sets, due to various generator operating 
environments; however, the long-term goal was to achieve the most accurate pair of estimation 
parameters to fit the full scale of all fifteen combined test sets.  In addition, the newly derived 
estimation parameters, k1 and k2 (in blue and green, respectively), and sum of squared errors, for the 
filtered curve fit and raw curve fit (in blue and green, respectively), are plotted against all possible cut 
times in part (b) of each figure. 
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Figure A.1(a):  Measured and calculated O2 percentages for Test N.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 

 
Figure A.1(b):  New estimation parameters and sum of squared errors (Test N).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Figure A.2(a):  Measured and calculated O2 percentages for Test T.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A2(b):  New estimation parameters and sum of squared errors (Test T).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Figure A.3(a):  Measured and calculated O2 percentages for Test Z.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A.3(b):  New estimation parameters and sum of squared errors (Test Z).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Figure A.4(a):  Measured and calculated O2 percentages for Test W.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A.4(b):  New estimation parameters and sum of squared errors (Test W).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

15

16

17

18

19

20

21

22

23

24

25

Time (s)

%
O

2

Oxygen Percentages

 

 
meas
orig calc filt
filterd curve fit

0 0.5 1 1.5 2 2.5

x 10
4

-500

0

500

Cut Time (s)

k1

 

 
k1
k2

0 0.5 1 1.5 2 2.5

x 10
4

16

18

20

k2

New O2 Estimation Parameters

0 0.5 1 1.5 2 2.5

x 10
4

0

10

20

30

40

Cut Time (s)

E
rro

r

Sum of Squared Errors

 

 
sum of sq error vs. filt line
sum of sq error vs. raw line



 69 

 
Figure A.5(a):  Measured and calculated O2 percentages for Test AH.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A.5(b):  New estimation parameters and sum of squared errors (Test AH).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Figure A.6(a):  Measured and calculated O2 percentages for Test U.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A.6(b):  New estimation parameters and sum of squared errors (Test U).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Figure A.7(a):  Measured and calculated O2 percentages for Test V.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A.7(b):  New estimation parameters and sum of squared errors (Test V).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Figure A.8(a):  Measured and calculated O2 percentages for Test AK.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A.8(b):  New estimation parameters and sum of squared errors (Test AK).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Figure A.9(a):  Measured and calculated O2 percentages for Test AS.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A.9(b):  New estimation parameters and sum of squared errors (Test AS).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Figure A.10(a):  Measured and calculated O2 percentages for Test AV.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A.10(b):  New estimation parameters and sum of squared errors (Test AV).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Figure A.11(a):  Measured and calculated O2 percentages for Test CA.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A.11(b):  New estimation parameters and sum of squared errors (Test CA).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Figure A.12(a):  Measured and calculated O2 percentages for Test CB.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A.12(b):  New estimation parameters and sum of squared errors (Test CB).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Figure A.13(a):  Measured and calculated O2 percentages for Test CC.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A.13(b):  New estimation parameters and sum of squared errors (Test CC).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Figure A.14(a):  Measured and calculated O2 percentages for Test CD.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A.14(b):  New estimation parameters and sum of squared errors (Test CD).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Figure A.15(a):  Measured and calculated O2 percentages for Test CE.  Green line based on equation 3.3 

and LP filtered, red line based on general equation A.1 with optimized coefficients. 
 

 
Figure A.15(b):  New estimation parameters and sum of squared errors (Test CE).  Raw line indicates 

optimal fit without LP filter, while filtered line indicates optimal fit with LP filter. 
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Several resulting trends from these newly derived estimation parameters and sum of squared errors, 
from each individual test set, were used in the determination of the most accurate linear oxygen 
estimation curve.  First, the trends of the newly derived estimation parameters followed very similar 
patterns when compared among all of the individual test sets.  Namely, the coefficient k1 showed a 
definite maximum value, while the coefficient k2 showed a definite minimum value; these phenomena 
appeared to take place generally at the same cut time, which was immediately flagged as a particular 
point of interest.  Second, the trends of the sum of squared errors plots also followed very similar 
patterns when compared among all of the individual tests sets.  The particular trend of interest among 
these errors was the fact that an approximate minimum value was observed at about the same cut time 
as that of the newly derived estimation parameters’ point of interest.  After flagging several different cut 
times and new estimation parameter sets as points of interest, it was finally determined through 
observation that the optimum estimation parameters and thus, the optimum oxygen estimation curve, 
occurred at the cut time where the coefficient k1 reached its approximate maximum value, the 
coefficient k2 reached its approximate minimum value, and the filtered sum of squared errors reached 
approximately its minimum value.  In the instance that more than one cut time generated approximately 
the same estimation parameters and sum of squared errors, the earlier cut time was deemed optimal 
due to the fact that more measured data was used in this particular computation; therefore, the linear 
estimation equation should reach more accurate oxygen values quicker than the later cut time(s).  The 
different cut times and estimation parameters deemed to be the optimum values for the best fit linear 
oxygen estimation equation, for each of the fifteen individual test sets, are tabulated below, as shown in 
Table A.2. 

Table A.2 
New O2 estimation best fit cut times and estimation parameters. 

Test ID Cut Time (s) k1 k2 
N 1080 148.853 17.824 
T 3600 3.442 20.869 
Z 1080 142.947 18.404 
W 1080 240.868 16.221 
AH 720 205.275 16.229 
U 3600 33.327 20.463 
V 0 2.779 20.916 
AK 0 1.959 21.132 
AS 720 198.971 17.605 
AV 4320 258.577 17.340 
CA 0 0 21 
CB 0 0 21 
CC 0 0 21 
CD 0 0 21 
CE 0 0 21 
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Upon completion of analyzing the fifteen data sets individually, it was concluded that, to achieve the 
optimum estimation parameters for a linear oxygen approximation equation, all of the test sets must be 
considered in order to consider the wide range of generator operating scenarios.  In order to derive the 
optimum estimation parameters that encompassed all fifteen tests, two different procedures were 
theorized. 
 
The first theorized procedure involved a simple method of averaging the optimum estimation 
parameters from each of the individual test sets in attempting to achieve the final optimum estimation 
parameters; however, this method proved unsuccessful in achieving a more accurate oxygen estimation 
equation than the original heuristically developed equation.  Several factors contributed to this method 
being deemed unsuccessful.  One reason was the fact that many of the individual test sets yielded 
proportional estimation parameters (k1) across a very broad spectrum when analyzed by the curve fit 
algorithm of least squares.  Specifically, Tests T, U, V, and AK yielded k1 values that were particularly low, 
with respect to other tests.  By yielding such low proportional coefficients, the dependence on 
generator variables (i.e. C from Equation A.1) used in the linear oxygen estimation equation is 
significantly decreased.  In addition, Tests CA through CE yielded k1 values of approximately zero, which 
essentially eliminates any dependence on generator variables.  The intent of such a linear oxygen 
estimation equation was based on the fact that oxygen percentages would be dependent on generator 
variables; therefore, this method was deemed somewhat insufficient.  Another reason behind this 
estimation parameter averaging method being deemed unsuccessful was the fact that some tests (i.e. 
Tests W and AH) were conducted over a significantly longer time span than others.  This large difference 
in time scales, between several test sets, meant that some of the newly derived estimation parameters 
would need to be more heavily weighted than others.  Significant time was not devoted to attempting to 
normalize, and subsequently average, the newly derived estimation parameters because a new 
procedure for determining the final optimum estimation parameters showed more promise. 
 
The second theorized procedure for determining the final optimum estimation parameters involved the 
concatenation of all fifteen individual test sets into one single set of measured oxygen and dependent 
generator data.  The order in which these tests were concatenated was not significant because time 
dependence, over the entire range of generator operation scenarios, was not a factor.  Once all fifteen 
individual test sets were concatenated together, the same curve fitting algorithm of least squares was 
used to analyze the entire range of data, as was used for each of the individual test sets.  The data for 
each individual test set was clipped at a prescribed cut time and remaining data concatenated together 
in order to analyze each possible cut time.  However, due to the fact that some tests were only 
conducted over a short period of time, and therefore consisted of very few possible cut times, the 
largest possible cut time for total concatenated data was equal to the largest possible cut time of the 
shortest test.  It must be noted that Test CD was excluded from the least squares curve fitting algorithm 
due to the fact that its maximum possible cut time was 720 s.  As was performed for each individual test 
set, new estimation parameters were derived and sum of squared errors measured for each possible cut 
time, in increments of 360 s.  Also, as previously performed, the sum of squared errors measurement 
began only after the transient period had deceased for each respective test set.  Because this new 
algorithm had already been performed on fifteen different data sets, in order to determine the optimum 
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estimation parameters for each individual test, the necessary trends and guidelines for determining such 
values had already been concluded.  Therefore, the same trends were used on this full range of 
concatenated data in order to determine the final optimum estimation parameters.  As previously 
mentioned, the optimum values tended to be located at the cut time with approximate maximum k1 
value, approximate minimum k2 value, and approximate minimum sum of squared errors.  Visual 
observations were also used to verify that the newly derived oxygen estimation curve did indeed fit the 
measured oxygen curve as accurately as possible.  Figure A.16 shows the measured oxygen (in blue) 
plotted for the full range of concatenated test sets along with the original filtered oxygen linear 
estimation (in green), from equation 3.3, and a new filtered oxygen linear estimation (in red), generated 
by the least squares algorithm.  By using the method of least squares to obtain a new oxygen estimation 
equation, an approximate 43% error reduction was achieved.  It should be noted that the concatenation 
of all individual test sets was performed in the following order: Test U, AH, AK, AS, AV, CA, CB, CC, CD, 
CE, N, T, V, W, and Z. 

 
Figure A.16:  Measured and calculated O2 percentages for concatenated tests. 

 
 Although the new oxygen estimation proved more accurate than the original estimation, one 
important observation was made in the way of the sudden and significant oxygen estimation change 
noted particularly in cyclic load tests.  The sudden changes in oxygen estimation were found to occur 
usually following a load change in the cyclic load profile tests.  Upon further investigation, it was 
concluded that these large changes, or transient spikes, were due to similar changes in CAT, which the 
oxygen estimation equation is dependent on.  In order to reduce such unexpected transient spikes in 
estimated oxygen, the CAT estimation was improved by way of using a more finely tuned RPM and MAP 
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based coefficient lookup table.  By improving the CAT estimation, and using the least squares method to 
obtain a final best fit oxygen estimation, an overall error reduction of approximately 15% was achieved 
from the previous filtered curve fit in Figure A.16.  The final filtered oxygen estimation with a refined 
CAT calculation (in red) is plotted along with the previous filtered curve fit (in green) and measured 
oxygen (in blue), as shown in Figure A.17. 

 
Figure A.17:  Measured and calculated O2 percentages (different CAT estimates). 

 
The final filtered oxygen estimation is plotted (in red) along with the original oxygen estimation (in 
green) and measured oxygen (in blue), as shown in Figure A.18(a), to illustrate the advantage gained 
from using the least squares method and improved CAT calculation to obtain a best fit equation across a 
wide range of operating conditions.  An overall error reduction of approximately 52% was achieved from 
the original heuristic oxygen estimation.  In addition, the final estimation parameter options, k1 and k2 

(in blue and green, respectively), and sum of squared error for the filtered curve fit (in blue), are plotted 
against all possible cut times, as shown in Figure A.18(b). 
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Figure A.18(a):  Measured and calculated O2 percentages (original and final). 

 
Figure A.18(b):  Final estimation parameters and sum of squared error (all tests). 
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During the determination of the final oxygen estimation parameters, it was observed from Figure 
A.18(b) that the coefficient k1 reaches a large comparable value, the coefficient k2 reaches a small 
comparable value, and the filtered estimation sum of squared error is minimized at a cut time of 
approximately 720 s.  Therefore, due to the fact that all possible values of k1, k2, and sum of squared 
error are comparable in the interval from 720 s to 1440 s, the earliest possible cut time should be 
deemed to possess the final optimum oxygen estimation parameters.  As previously mentioned, if all 
three vital factors are comparable at multiple cut times then the earliest possible cut time should be 
deemed optimal due to the fact that more measured data was used in the particular computation, 
allowing for the oxygen estimation curve to reach more accurate values quicker than using later cut 
times.  Therefore, 720 s was chosen as the optimal cut time for a linear best fit oxygen estimation curve 
to be generated.  As shown in Figure A.18(b), to optimize the linear oxygen approximation equation, the 
new estimation parameters, occurring at 720 s, consisted of the following set: coefficient k1=201.55 and 
coefficient k2=16.96.  It is worth noting that, in particular, test AH and test W play a significant role in 
determining the overall estimation parameters due to their extraordinary large time scales.  Specifically, 
because tests AH and W are performed in such extreme indoor environments, the final oxygen 
estimation will be particularly sensitive to indoor operation.  Finally, it can be observed from Figure 
A.18(a) that the newly generated oxygen estimation curve more accurately matches the measured 
oxygen curve than that of the original estimation, generated from Equation 3.3.  This conclusion was 
made evident by measuring the sum of squared error between the original filtered oxygen estimation 
curve and the measured oxygen curve.  As shown in Table A.3, the error between the new optimal 
filtered oxygen estimation and measured oxygen is significantly lower than the error between the 
original filtered oxygen estimation and measured oxygen; therefore, the new estimation algorithm 
allows for a more accurate oxygen calculation over a wide range of generator operating scenarios. 
 

Table A.3 
Estimation parameters and sum of squared error (all algorithms). 

Algorithm k1 k2 
Sum of Squared Error             
(meas. vs. filt.) 

Original O2 
Estimation 

175.00 18.00 228.35 

1st O2 Curve Fit 
Estimation 

227.00 16.80 129.32 

Final O2 Estimation 
with new CAT 

201.55 16.96 109.27 
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APPENDIX B 
Summary of Generator Operation with Black Box ECU 
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This appendix defines operational procedures for the generator that are unique to operation with the 
black box ECU installed.  Figure B.1 shows the operator panel of the generator and the throttle arm of 
the generator. 
 

 
Figure B.1:  Generator operator panel and throttle arm location. 

 
Starting the Engine: 

1. Switch on the ECU Power (switch 1). 
2. Switch on the fuel/spark power (switch 2). 
3. Turn ignition key switch and hold until engine is started. 

a. If cold starting, the engine may have to be choked by manually closing the throttle by 
pressing the throttle are (indicated in Figure B.1). 

 
Stopping the Engine: 

1. Switch off the fuel/spark power (switch 2). 
2. Switch off the ECU power (switch 1). 

 
 
If modification of the ECU software is desired, or if monitoring the ECU performance is desired, a PC may 
be connected to the device.  The PC to be employed must have TunerStudio installed, which is software 
available for download at www.tunerstudio.com.  The PC can be connected to the ECU using a 9-pin 
serial port to 1/8” jack cable.  Through TunerStudio, select File, Project, and Open Project.  The 
appropriate project to choose is CPSC. 
 

1 

2 
Throttle Arm 

http://www.tunerstudio.com/

