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CPSC Staff Statement on:  

Guidance Document for use of Human 
Biomonitoring Data For Exposure Assessment 
The U.S. Consumer Product Safety Commission (CPSC) contracted with the University of 
Cincinnati to develop a guidance document that describes how human biomonitoring (HBM) 
data can be used with toxicokinetic, anatomy, and physiology information of different kinds to 
calculate chronic doses of human exposure through reverse dosimetry. Staff plans to use the 
guide as a tool to inform how the data can promote consistency and transparency across 
exposure assessments.  

This statement was prepared by the CPSC staff, and the University of Cincinnati produced the 
following report for CPSC staff. The statement and report have not been reviewed or approved 
by, and do not necessarily represent the views of, the Commission.  

CPSC staff may assess a product’s potential health effects to consumers under the Federal 
Hazardous Substances Act (FHSA). A “hazardous substance” under the FHSA includes 
products that are “toxic” under the FHSA or present other hazards enumerated in the statute. A 
substance that is “toxic” may be a “hazardous substance” under the FHSA if it has the potential 
to cause “substantial personal injury or substantial illness during or as a proximate result of any 
customary or reasonably foreseeable handling or use.” Therefore, staff considers exposure and 
risk in addition to toxicity when assessing potential hazards of certain products under the FHSA. 

The second part of the risk assessment process is exposure assessment, which consists of a 
review of the available exposure data for the chemical. Approaches for exposure assessment 
vary, and this document describes one of many potential approaches (reverse dosimetry). This 
guidance document provides a range of available approaches and does not commit CPSC staff 
to use any one or combination of these approaches when conducting future assessments. 

CPSC staff considers human biomonitoring data to be a valuable resource when estimating 
aggregate exposure to chemical substances for individuals or population groups. CPSC staff 
acknowledge that these data should be compared with information on consumer products to 
determine possible source attribution from multiple product and non-product-related sources to 
aggregate exposure. 
  



I 
 
 

Guidance Document for Use 
of Human Biomonitoring 
Data for Exposure 
Assessment 
 
(Contract # CPSC-D-17-0001) 

Task order 61320620F1013 

Prepared by: 

Risk Science Center 
Department of Environmental and Public Health Science 

University of Cincinnati 
 

Contributors: 

Lynne Haber, University of Cincinnati 
Brendan Hanson, University of Cincinnati 

Sanjana Yerubandi, University of Cincinnati 
Mark Bradley, University of Cincinnati 

Sean Hays, Summit Toxicology 
 

Prepared for: 

Charles Bevingtron, MPH 
U.S. Consumer Product Safety Commission 

 

Contact: 
Lynne Haber (Lynne.Haber@uc.edu) 

August 6, 2021 

 

 

  



  

Contents 
List of Abbreviations ............................................................................................................ 4 

1.0 Introduction to Human Biomonitoring in CPSC Context ....................................... 6 
1.1 What is Biomonitoring and Why is it Useful? .................................................................................. 6 
1.2 Framing based on CPSC Problem Formulation ................................................................................ 6 

2.0 Evaluation of the Biomonitoring Study ................................................................... 7 
2.1 Study Population ............................................................................................................................ 8 
2.2 Sampling Strategy .......................................................................................................................... 8 
2.3 Analytical methods ........................................................................................................................ 9 
2.4 Choice of Biomarker of Exposure .................................................................................................. 10 
2.5 Choice of Biological Matrix ........................................................................................................... 11 

2.5.1 Urine .......................................................................................................................................... 12 
2.5.2 Blood ......................................................................................................................................... 12 
2.5.3 Breast Milk and Lipids ............................................................................................................... 13 
2.5.4 Exhaled Breath .......................................................................................................................... 13 
2.5.5 Other Matrices (Hair, Nails, Teeth, Saliva, Sweat) .................................................................... 14 

2.6 Study Design for Evaluating Exposures from Consumer Products .................................................. 15 

3.0 Interpreting the Biomonitoring Data .................................................................... 15 
3.1 Overview...................................................................................................................................... 15 
3.2 Sources of Biomonitoring Data .................................................................................................... 15 
3.3 Reverse Dosimetry Approaches ................................................................................................... 16 

3.3.1 Introduction to Reverse Dosimetry and Exposure Reconstruction ........................................... 16 
3.3.2 Urinary Mass Balance Approach ............................................................................................... 16 
3.3.3 Exposure Conversion Factor Approach ..................................................................................... 19 
3.3.4 Reverse Compartmental Model Approach ............................................................................... 19 
3.3.5 Multi-Compartmental Model Approach ................................................................................... 22 

3.4 Sources of Chemical-Specific Toxicokinetic Data .......................................................................... 26 
3.4.1 Introduction............................................................................................................................... 26 
3.4.2 Human In Vivo Data ................................................................................................................... 27 
3.4.3 Animal In Vivo Data ................................................................................................................... 28 
3.4.4 In Vitro Data .............................................................................................................................. 29 
3.4.5 In Silico Data .............................................................................................................................. 30 

3.5 Sources of Anatomy and Physiology (A&P) Data ........................................................................... 30 
3.5 Forward Dosimetry ...................................................................................................................... 32 
3.6 PBPK Modeling Approaches ......................................................................................................... 32 
3.7 Determining Source Contribution to External Exposure ................................................................ 32 

3.7.1 Qualitative Approaches ............................................................................................................. 33 
3.7.2 Quantitative Approaches .......................................................................................................... 34 

3.8 Addressing Variability .................................................................................................................. 36 
3.8.1 Variation Related to Hydration Status ...................................................................................... 36 
3.8.2. Intra-individual Variability, the Relationship to Half-Life and Population Distribution ........... 38 
3.8.3 Overall variability ...................................................................................................................... 43 

4.0 Case Studies .............................................................................................................. 43 



5.0 Conclusions and Recommendations ...................................................................... 43 
5.1 Urine as a Biomatrix ..................................................................................................................... 44 
5.2 Blood as a Biomatrix .................................................................................................................... 45 
5.3 Lipids as a Biomatrix ..................................................................................................................... 46 

6.0 Acknowledgement ................................................................................................... 46 

7.0 References ................................................................................................................ 46 

Appendix A – Case Studies ................................................................................................. 61 
A1.0 Aylward et al., 2017 - Bisphenol A (BPA) and Triclosan; Urinary Spot Sampling of 

Rapidly Eliminated Chemicals ................................................................................................. 61 
A1.1 Overview ................................................................................................................................... 61 
A1.2 Identify the necessary data ........................................................................................................ 61 
A1.3 Conduct Reverse Dosimetry ....................................................................................................... 62 
A2.0 Egeghy and Lorber, 2011 – Perfluorooctane sulfonate (PFOS); Blood/Serum Sampling of 

Persistent, Lipid-Soluble Chemicals ....................................................................................... 62 
A2.1 Overview ................................................................................................................................... 62 
A2.2 Identify the necessary data ........................................................................................................ 62 
A2.3 Conduct Reverse Dosimetry ....................................................................................................... 63 
A3.0 Wetmore et al., 2015 – Chlorpyrifos (Case Study 3A)/Acetaminophen (Case Study 3B); 

Use of In Vitro Toxicokinetic Parameters to Estimate Daily Intake ..................................... 64 
A3.1 Overview ................................................................................................................................... 64 
A3.2 Identify the necessary data ........................................................................................................ 64 
A3.3 Conduct Reverse Dosimetry ....................................................................................................... 67 
A4.0 Pleil and Sobus (2013), Use of the ICC .................................................................................. 68 

Appendix B – Supplemental Tables .................................................................................. 69 

Appendix C – Search Strategy ............................................................................................ 78 

Appendix D –Expert Interviews ........................................................................................ 89 

Appendix E – Definitions related to this Guide ............................................................... 90 
 
 
 
 
 
  



List of Abbreviations  
 
2,5-DCP = 2,5-dichlorophenol 
A&P = Anatomy and Physiology 
APHL = Association of Public Health Laboratories 
ATSDR = Agency for Toxic Substances and Disease Registry 
BEs = Biomonitoring Equivalents 
BMI = Body Mass Index 
BPA = Bisphenol A 
BRAT = Biomarker Reliability Assessment Tool 
CDC = Centers for Disease Control and Prevention 
CEFIC = European Chemical Industry Council 
CEM = Consumer Exposure Model 
CHMS = Canadian Health Measures Survey 
CPSC = Consumer Product Safety Commission 
DAF = Dermal Absorption Factor 
DBP = di-n-butyl phthalate 
DEHP = di(2- ethylhexyl) phthalate 
DiBP = diisobutyl phthalate 
ECF = Exposure conversion factor 
ECHA = European Chemicals Agency  
EPA (or US EPA) = Environmental Protection Agency  
FDAE = Forward Dosimetry Aggregate Exposure 
Fue = Urinary excretion fraction  
Fub = Fraction of parent compound in the plasma  
GC-MS/MS = Gas Chromatography - Tandem Mass Spectrometry 
GC-HRMS = Gas Chromatography-High Resolution Mass Spectrometry 
GerES = German Environmental Survey 
GFR = Glomerular Filtration Rate 
GM = Geometric mean 
GSD = Geometric standard deviation 
HBM = Human biomonitoring 
HBM4EU = Human Biomonitoring for the European Union 
HEALS = Health and Environment-wide Associations based on Large population Surveys 
HTTK = High-Throughput Toxicokinetics 
HTPBTK = High Throughput Physiologically Based Toxicokinetic 
ICE = Integrated Chemical Environment 
ICC = Intraclass Correlation Coefficient 
ICRP = International Commission on Radiological Protection 
IPCS = International Programme on Chemical Safety 
IRIS = Integrated Risk Information System 
IVIVE = In vitro to in vivo extrapolation 
LC-MS/MS = Liquid Chromatography - Tandem Mass Spectrometry 
LOD = Limit of detection 
NAM = New alternative methods 



NAS = National Academies Press 
NHANES = National Health and Nutritional Examination Survey 
PBPK = Physiologically-based pharmacokinetic 
PBS = Phosphate-Buffered Saline 
PC = Polycarbonate 
PCBs = Polychlorinated biphenyls 
PFOA = Perfluorooctanoic acid 
PFOS = Perfluorooctane sulfonic acid 
QPPR = Quantitative Property-Property Relationship 
QSAR = Quantitative Structure Activity Relationship 
QSPR = Quantitative Structure Property Relationship 
RED = Rapid Equilibrium Dialysis 
RfD = Reference dose 
RIVM = Rijksinstituut voor Volksgezondheid en Milieu (the Netherlands National Institute 
for Public Health and the Environment) 
SEC = Source Emission Categories 
SVOC = Semivolatile Organic Compound 
tt-MA =  trans-muconic acid 
UFR = Urinary Flow Rate 
UFRBW = Body Weight Adjusted Urinary Flow Rate 
VOC = Volatile Organic Compound 
WHO = World Health Organization   



1.0 Introduction to Human Biomonitoring in CPSC Context 
 
1.1 What is Biomonitoring and Why is it Useful?  
Human biomonitoring is the measurement of chemicals in human bodily fluids or tissues. 
As described further in Section 2, the sampled biological matrix can include urine, blood, 
breast milk, saliva, lipids, hair or nails, although the quality of the quantification varies with 
the matrix. The chemical measured may be the parent chemical or metabolite(s). A key 
advantage of biomonitoring is that it integrates exposures across routes and pathways. 
That is, biomonitoring data reflect the total internal dose, regardless of the source(s) of 
exposure. Exposures can be observed with biomonitoring even if intake was not monitored 
or measured at the time of exposure. However, the relationship between exposure and the 
measurement in a biological matrix depends on the chemical half-life in the body and the 
frequency and timing of past and/or ongoing exposures, as discussed throughout this 
guidance. In addition, biomonitoring results may not be specific to the chemical of interest, 
since measured metabolite(s) may be shared with other common parent-chemical 
exposures, or the chemical of interest may itself be a metabolite of other chemical(s) to 
which the individual was exposed.  

 
1.2 Framing based on CPSC Problem Formulation 
CPSC staff may consider biomonitoring data when conducting exposure assessments of 
chemical substances found in consumer products. Occurrence of a chemical substance in a 
biological matrix provides evidence of internal exposure. During scoping, CPSC staff 
consider whether there is a plausible connection between occurrence of a chemical in 
biological matrices and consumer applications of chemical substances. Examples of scoping 
questions include:  

- Is there information available on consumer application sources that may have 
contributed to exposure. Consumer applications include contact exposures through 
direct use of consumer products and mediated exposures (through indoor air, 
indoor dust, or other environmental media) from consumer products 

- Are there multiple biomonitoring and consumer application data sources? 
- Is there enough information to characterize temporal or spatial trends of 

biomonitoring data or consumer product uses? 
- Is the range of biomonitoring occurrence levels narrow (e.g., mostly at or near 

detection levels) or wide (e.g., large distribution between minimum and maximum 
values)?  

 
If there is a connection between biomonitoring data and consumer product applications 
established during scoping, CPSC staff may further consider use of biomonitoring data in 
developing risk assessments. There are multiple approaches to measure or estimate 
internal exposures. While biomonitoring provides a direct measurement of internal 
exposure, there is not a way to precisely estimate the contribution from various sources of 
exposure. CPSC staff may need to consider the contributions from various sources in their 
assessments.  
 



Consumer exposure models estimate indoor environmental concentrations and doses 
associated with use of consumer products or presence of consumer articles. Consumer 
exposure models provide the flexibility to estimate exposures associated with a variety of 
exposure scenarios from multiple products. The exposure assessor needs to consider how a 
person would be exposed to one or more products and carefully construct modeling 
scenario(s) that describe that person’s exposure.   
 
Environmental monitoring data can be combined with age-specific exposure factors and 
activity patterns to estimate doses. Environmental monitoring data can be used in lieu of or 
to supplement consumer exposure modeled estimates. The environmental media 
considered will vary based on the chemical substance, as certain chemical substances are 
more likely to be present in certain media based on inherent physical-chemical properties 
and expected use patterns.  Environmental monitoring data represent spatial and temporal 
conditions present at the time the sample was collected. Therefore, these data may or may 
not reflect scenarios associated with specific chemical substances used in consumer 
products. Nevertheless, environmental monitoring data can be used to characterize the 
typical range of occurrence of chemical substances in different environmental media and to 
ground-truth modeled estimates.  
 
When exposure estimates from consumer exposure models or environmental monitoring 
data are combined with chemical-specific toxicokinetic data, typically the fraction of the 
chemical absorbed, estimate(s) of internal exposure or absorbed dose are derived. 
 
Biomonitoring data can also be used to estimate the internal or absorbed dose of a 
chemical There are multiple approaches to derive internal doses based on biomonitoring 
data, and these approaches are the subject of this guide. The guide will characterize 
multiple sub-categories of biomonitoring data and the various approaches available for 
treating these different data types. 
 
CPSC staff may use a variety of data sources to provide multiple lines of evidence when 
deriving exposure estimates. All of these approaches can either provide deterministic point 
estimates of exposure or ranges of exposure based on anticipated variability. It is beyond 
the scope of this guide to discuss ways to integrate data across multiple approaches. 
However, this guide will consider how to address variability present in biomonitoring data. 
Further, the guide will provide important context and associated uncertainties with 
interpreting different sub-categories of biomonitoring data for use in exposure assessment.  

2.0 Evaluation of the Biomonitoring Study 
 
Many of the considerations for evaluating biomonitoring data are most relevant in the 
context of designing and conducting a study. However, it is also important to consider the 
issues discussed in this section as part of data review. When evaluating biomonitoring 
studies for use in exposure assessment, CPSC staff considers: 

• the relevance of the study population,  
• the appropriateness of the sampling strategy, 



• the adequacy of the analytical methods,  
• the appropriateness of the biomarker, and  
• the appropriateness of the choice of matrix. 

This section concludes with a recommended study design for biomarker sampling for 
evaluating exposure from consumer products.  
  
2.1 Study Population 
CPSC staff plans to consider relevance of a study population with regard to fit-for-purpose 
project goals (see Section 1.2). This includes consideration of the demographics of the 
study population, the geographic representation of the population, and when samples were 
collected. For example, different projects may focus on exposures of a particular sub-
populations (e.g., mothers and children in the study of Casas et al., 2018) or on wide-spread 
regional or national populations. Geographical coverage may be important, particularly if 
some aspects of exposure are expected to exhibit regional variability. CPSC staff plan to 
consider the degree to which the sampled population reflect the population of interest for 
the exposure assessment. Consideration of when samples were collected can be important, 
since some exposures change over time. Additional areas for consideration include age, sex, 
body mass index (BMI), race/ethnicity, and any other factor that would have an impact on 
the biomarker measurement or the relationship between the biomarker and internal dose.   
 
CPSC staff plan to evaluate the sampling strategy as part of the consideration of the 
representativeness of the sample population. Key aspects of this evaluation include the 
sample size and the approach for acquiring the sample of individuals for the study 
(Namulanda et al., 2020). Random sampling methods are preferred over samples of 
convenience, such as the first 100 people at a clinic. If a sample of convenience is used, the 
study should explicitly report the strategy for recruitment and selection, in order to allow 
for an independent evaluation of any potential distortions or biases (NAS, 2006).  
 
2.2 Sampling Strategy 
The appropriate sampling strategy(s) depends on the biomarker being evaluated and the 
matrix being sampled. A single sampling time is usually sufficient for measurements in 
blood and lipid, both in light of the invasive nature of the sampling and because these 
matrices are typically used to evaluate chemicals with longer half-lives. Multiple blood 
samples over years, however, could be used to evaluate long-term trends.  
 
Several approaches are commonly used for sampling urine. Spot sampling (collection of a 
single sample) or collection of the first morning void is commonly used, due to 
convenience. However, as discussed in greater detail in Section 3.8, these approaches can 
lead to systematic errors. In brief, population variability may be over-estimated (leading to 
an over-estimate of the 95th percentile, for example, and a corresponding over-estimate of 
exposure/risk) (Aylward et al., 2017). This is because the intra-individual variability in 
biomarker levels with time since time since exposure makes a large contribution to the 
total measured variability. Therefore, 24-hour composite samples, representing each 
individual’s total exposure over a day, are preferred over spot sampling. In some cases, 
samples may be pooled over a longer period (e.g., a week), to better reflect each 



individual’s average exposure (Casas et al., 2018), although such an approach is more 
labor-intensive than pooling over a day.  
 
Note that this use of composite or pooled samples is distinct from pooling samples from 
multiple individuals into one sample. Such pooling across individuals has the strong 
disadvantage of decreasing the estimate of population variability, or making it impossible 
to estimate variability, depending on how samples are pooled.  
 
Hair is rarely used for biomonitoring (see Section 2.5), but evaluation of different segments 
of hair can provide a temporal record of exposure.  
 
Additional considerations for evaluating the appropriateness of the choice of biomarker 
and biological matrix are addressed in Sections 2.4 and 2.5. 
 
2.3 Analytical methods 
Numerous factors must be considered in evaluating the validity of an analytical method. 
Vorkamp et al. (2021) and LaKind et al. (2014) have created comprehensive approaches to 
analyzing the validity of an analytical method. Important factors when analyzing analytical 
methods include: 

1. Sample Preparation- Are sampling preparation procedures well established and 
applied routinely?  

2. Standards- Are analytical standards for target biomarkers applied throughout 
the methodology or not, and are these standards commercially available? 

3. Validation- Has this analytical method been validated multiple times? Are 
certified materials being used or are interlaboratory comparisons of the 
methodology results available? Is this method well-established in multiple 
laboratories? 

4. Selectivity- Is there interference that indicates a measured concentration might 
not be related to the biomarker of interest? 

5. Sensitivity- There are numerous factors to consider when thinking about the 
sensitivity. 

a. Have limits of detection (LOD) been determined for each biomarker of 
exposure within a biological matrix (how comprehensive are these 
analyses)? 

b. Are these LODs sufficiently below what a typical exposure would be? 
c. Do LODs remain similar from sample to sample over time? Or do they 

vary? 
d. Have similar LODs been obtained in other laboratories? 

6. Accuracy- Has the accuracy of an analytical test been confirmed using external 
quality control measures (e.g., certified reference manuals, relevant 
interlaboratory comparisons)? Is the accuracy within limits given by the 
guidelines for validation of analytical methods? (e.g., ≤ 20% deviation from the 
concentration level of a biomarker) 



7. Robustness- When there are slight changes in the analytical procedure, are there 
any variations in each sample? Would there be variations if the same procedure 
were repeated? 

8. Recovery- Can between 80-120% of the biomarker of interest be recovered? If 
not, can internal laboratory standards compensate for these deviations? 

9. Range/Linearity- Is this methodology precise and accurate for determining the 
concentration of biomarker in a specific biological matrix? 

10. Method requirement- Does the instrumentation unambiguously identify and 
quantify a biomarker of interest (e.g., GC-MS/MS, LC-MS/MS, GC-HRMS)? 

11. Feasibility- Is this analytical method both financially and technologically feasible 
for the biomarker of interest? Some factors for non-feasibility may include: 

a. Compound instability/volatility: Is the stability of a biomarker known? If 
a compound is exceedingly volatile, transportation and storage conditions 
may be adapted, but if it is not financially or technologically feasible to 
store it, this could be problematic.  

b. Matrix availability: If the matrix is too invasive or if it is too hard to 
preserve a given sample, it may not be feasible to sample from this 
matrix.  

It is also important to note any limitations in the study that were identified by the 
study authors.  
 

Quality control issues also apply to sampling and sample storage. Information may not 
always be available on the specifics of sampling and storage, but where such information is 
available, specifics of the sample collection and preparation should be evaluated. This 
includes factors such as the method of sample collection and storage, and the use of 
appropriate analytical methods (APHL, 2019; CDC, 2018; LaKind et al., 2014; Vorkamp et 
al., 2021). 
 
Metabolites often undergo conjugation reactions (e.g., sulfation, glucuronidation) as part of 
Phase II metabolism. In such cases, it is important to ensure that both conjugated and 
unconjugated forms of the metabolite are measured. This is often done by including a 
hydrolysis step as part of the sample preparation, but it is important to ensure that the 
hydrolysis does not result in other changes to the metabolite. The documentation of the 
analytical approach should specify whether the analytical approach detects only free 
compound or free and conjugated. 

 
2.4 Choice of Biomarker of Exposure 
CPSC staff consider a number of factors in determining whether a potential biomarker is 
appropriate for estimating exposure (summarized by Aylward et al., 2017; Casas et al., 
2018; LaKind et al., 2014; Vorkamp et al., 2021). At the most basic level, a biomarker of 
exposure should “vary consistently and quantitatively with the extent of exposure 
(especially at low doses)” (NAS, 2006). The limit of detection should be sufficiently 
sensitive, and the level of environmental exposure should be sufficiently high relative to 
endogenous generation of the biomarker for the biomarker levels to primarily reflect the 
exogenous exposure.  



 
An exposure biomarker may be the parent chemical or a metabolite or a combination of 
multiple metabolites. The parent may be a more appropriate biomarker when metabolism 
is slow, while metabolites are often used when metabolism and elimination occur relatively 
rapidly (half-life less than about 8 hours). Even then, it is important to consider the impact 
of intra-individual variability (see Section 3.8). It may also be important to characterize 
inter-individual factors that may impact exposure and presence of biomarker. This can 
include age, education, genetic factors (e.g., metabolic polymorphisms), and smoking status 
(IPCS, 2001). Some of these factors may be known from other studies, while other 
relationships may be evaluated as part of the biomarker study. If there is variation in 
biomarker concentrations related to a confounding exposure, a different biomarker should 
be used. For example, US EPA (2020a) excluded a potential biomarker of 1-bromopropane 
in their analysis, because of questions regarding the specificity of the biomarker.  
 
Choice of the biomarker requires an understanding of the chemical’s toxicokinetics, 
including the chemical’s metabolic pathway, key metabolites, whether those metabolites 
are shared with other chemicals, as well as whether the parent is itself a metabolite of 
other chemicals. In most cases, the biomarker should be specific to the exposure of interest. 
For example, benzene is metabolized to both phenol and trans, trans-muconic acid (tt-MA), 
but the latter is more appropriate as a measure of benzene exposure, since urinary phenol 
can also reflect exposure to phenol itself (ATSDR, 2007)1. Sometimes there are multiple 
metabolites that are potentially useful as biomarkers. In some cases, calculations are 
conducted based on the total concentration of the relevant metabolites (e.g., Smith et al., 
2021). In other cases, a single metabolite is chosen for the quantitative calculation. In this 
case, the choice of biomarker may be based on not only confirmation of the uniqueness of 
the metabolite to that chemical, but also factors related to the ease or difficulty of analysis. 
The proportion of the parent exposure converted to that metabolite is reflected in the 
urinary excretion fraction (Fue) (see Section 3.3.1). Conversely, a metabolite shared by 
several chemicals in a class may be used if the risk management needs are such that 
determining the exposures to the class of chemicals is sufficient, without identifying 
exposures to the specific parent chemicals.  
 
2.5 Choice of Biological Matrix 
Urine and blood are the most commonly-used matrices, with urine used predominantly for 
chemicals with shorter half-lives, while blood is used for chemicals with longer half-lives, 
which are often lipophilic. Breast milk, and other lipid-based matrices, are also sometimes 
used for lipophilic chemicals. Exhaled breath may be used for volatile chemicals. Some 
biomarker work has also been done with other matrices, including hair, nails, sweat, saliva 
and teeth, but these are more often used in a qualitative manner (e.g., determine whether 
past exposure has occurred with no need to quantify extent of exposure). 
  

                                                        
1 As discussed by Hays et al. (2012), although tt-MA is a popular biomarker for occupational exposures to 
benzene, tt-MA confounding from sorbic acid is problematic at the much lower environmentally-relevant 
benzene exposure levels. 



The choice of biological matrix is dependent on the characteristics of the biomarker as well 
as the issues noted in problem formulation. Choice of the matrix should consider the 
chemical/physical properties of the chemical of interest and metabolites (e.g., 
lipophilicity/water solubility, volatility), common routes of exposure, half-life of the parent 
chemical, excretion pathways, and invasiveness of potential matrices. The population being 
evaluated can also affect the choice of matrix. For example, urine can be collected from 
infants using specially designed diapers (NAS, 2006), but it can be difficult to obtain enough 
blood for analysis from an infant. 
 
2.5.1 Urine 
Urine is often used to estimate exposure to compounds that are water soluble and rapidly 
excreted from the body (Esteban and Castano, 2009; Aylward et al., 2017). As noted in 
Section 2.2, a common approach is to collect spot urine samples, but 24-hour or multi-day 
composite samples better reflect the average individual exposure, and thus the overall 
population variability (Aylward et al., 2017; Casas et al., 2018). If taking daily or multi-day 
composite samples is not feasible, techniques exist to determine the optimal number of 
spot samples (see Section 3.8). 
 
Urine can also be used for evaluating chemicals that are slowly excreted from the body. 
Urinary levels of metals such as cadmium and lead have been strongly correlated with 
blood biomarker levels, but urine is much less invasive, urine samples are the “preferred 
non-invasive matrix in heavy metals biomonitoring” (Esteban and Castano, 2009). An 
advantage for slowly excreted chemicals is that they are more likely to be at steady state 
levels in the body, reducing variation in urine levels and the associated uncertainty. For 
slowly-excreted chemicals, urinary levels tend to reflect recent exposures, while blood 
levels are related to total body burden, and so reflect the exposure over a longer duration. 
A challenge with some of the slowly-excreted chemicals, such as metals, is that most of the 
excretion is in the feces, and Fue can be very low. This results in higher variability, and thus 
higher uncertainty.  
 
2.5.2 Blood 
Blood is typically used for compounds that are not rapidly excreted from the body (HEALS, 
2015). Depending on the biomarker, one may choose to analyze whole blood, serum, 
plasma, or cell types within the blood (Alves et al., 2014). Concentrations in blood are 
related to tissue concentrations, with blood considered the “universal link between all 
tissues of the organism,” making it the preferred matrix for many contaminants (Alves et 
al., 2014). However, it is invasive to collect blood. Typically, no more than 20 mL can be 
collected at one time (Manno et al., 2014; Polkowska et al., 2004). The use of an invasive 
matrix may make it harder to acquire participants for a study, and ethical concerns for 
sampling children need to be considered (HEALS, 2015; Manno et al., 2014). The site of 
blood collection should also be considered. For example, venous blood sampling is 
preferred over a finger prick test for testing blood lead levels, because the latter test is 
prone to surface lead contamination if the hands are not properly cleaned (ATSDR, 2020). 
 



Blood serum is lipid rich and so is a useful biomatrix for lipophilic substances such as 
halogenated flame retardants, and less invasive than sampling fatty tissue (Tay et al., 
2019). Blood can also be used for evaluating rapidly excreted (typically more water-
soluble) chemicals. In these cases, the issues of variability and the length of the half-life 
relative to the frequency of exposure need to be considered, as for less invasive urinary 
measurements. For very persistent chemicals, blood concentrations reflect the cumulative 
exposure, which can result in age-related trends in biomarker levels if the population 
exposure is decreasing with time.  Serum lipid concentrations and the serum 
concentrations of lipophilic chemicals vary with recent meal consumption, but 
normalization to total serum lipid content stabilizes the estimated concentration of 
lipophilic substances (Phillips et al, 1989, as cited by Aylward et al., 2014). Aylward et al. 
(2014) also noted that lipid concentration in serum can affect the serum concentration of 
lipophilic chemicals even if they are not persistent, but that lipid adjustments have not 
been applied routinely to measurements of volatile organic compounds in blood. Similarly, 
binding to proteins in blood can affect the measured levels of the biomarker, but 
adjustment for protein binding is not done routinely. 
 
2.5.3 Breast Milk and Lipids  
The maternal body burden of fat-soluble compounds such as dioxins and brominated flame 
retardants can be evaluated with reverse dosimetry by sampling breast milk (Shen et al., 
2007; Uehara et al., 2006; HEALS, 2015) to assess exposures to the mother. Breast milk 
data can also be used with a conventional exposure assessment approach to estimate early 
life exposure in babies (HEALS, 2015). Collecting breast milk is easy and non-invasive. 
Breast milk can vary in lipid concentration, which requires a lipid adjustment (mg 
biomarker/g lipid) to correct for variation in lipid concentration (Esteban and Castano, 
2009).  
 
Lipophilic compounds may rapidly diffuse from the blood to fatty tissues, which may 
warrant the use of a lipid as a biological matrix (NAS, 2006). Adipose tissues store 
lipophilic compounds in the body and may metabolize and release into the bloodstream at 
a slow rate. Sampling of adipose tissues represents long-term exposure to lipophilic 
compounds but is invasive and it is difficult to acquire a large sample size. The World 
Health Organization limits the use of adipose tissues to “ecological studies comparing fat 
from cadavers or surgical specimens to general population levels” (IPCS, 2000). 
 
2.5.4 Exhaled Breath 
Generally, volatile compounds with short half-lives are exhaled from the lungs, making 
exhaled breath a suitable biomatrix (Tang et al., 2015; Manno et al., 2014). Exhaled breath 
can be used to monitor both previous inhalation exposure to volatile chemicals and levels 
of volatile chemicals absorbed after oral or dermal exposure. After absorption, volatile 
compounds will travel to the lungs through the blood and will be expired (Tang et al., 
2015). Exhaled breath is easy to collect, is inexpensive, and is non-invasive (Wilson and 
Monster, 1999). Methods are available for both direct breath analysis in real time and for 
indirect breath analysis (involving sample collection and concentration), but these involve 
specialized equipment (Tang et al., 2015). 



 
2.5.5 Other Matrices (Hair, Nails, Teeth, Saliva, Sweat) 
There are several matrices that can be used to detect the presence of biomarkers, but are 
currently not generally considered adequate or appropriate for quantitative estimates of 
exposure. An important exception is that hair concentrations of methylmercury have been 
used for exposure estimates, including as supporting data for the RfD developed by the US 
EPA (2001) in its IRIS assessment. 
 
Hair can be used to characterize long term exposure to heavy metals such as 
methylmercury.  If the hair is investigated in segments, it can provide a timeline of 
exposure (Esteban and Castano, 2009). Hair is a minimally invasive matrix to sample 
(HEALS, 2015). A limitation of this matrix is that washing is needed to remove chemicals 
that deposited onto the hair (as opposed to being excreted into the hair). However, washing 
can also alter the concentration of the chemicals within the hair, complicating the analysis 
(Esteban and Castano, 2009; Wilhelm and Idel, 1996; HEALS, 2015). The relatively large 
amount of hair that needs to be collected (50-200 mg of hair) can limit the use of this 
matrix (HEALS, 2015). Furthermore, it is difficult to associate levels of biomarker in hair to 
biomarker in blood and other tissues (Esteban and Castano, 2009).  
 
Nails can provide information on the long-term exposure of inorganic chemicals such as 
heavy metals (Esteban and Castano, 2009; HEALS, 2015). It is advantageous to use nails as 
long-term exposures can be characterized in one small sample (HEALS, 2015). Nails can be 
prone to external contamination, but toenails are not as prone to contamination as 
fingernails (Esteban and Castano, 2009). For analyzing biomarker in nails, samples can be 
contaminated through use of nail polish, nail cutters, and medication. 
 
Deciduous teeth can be used to detect exposures to metals such as lead and magnesium in 
children (HEALS, 2015). Teeth can provide information related to lifetime exposure in 
children (HEALS, 2015). Deciduous teeth are difficult to collect and are not easily available 
(Esteban and Castano, 2009).  
 
Saliva may be a suitable matrix in cases where the biomarker has a low molecular weight 
(e.g., organic solvents, specific trace elements, selected pesticides), but does not bind 
strongly to proteins (HEALS, 2015; Esteban and Castano, 2009). Saliva is a non-invasive 
matrix that is easy and cheap to collect (Esteban and Castano, 2009), but may be less 
sensitive than other matrices (HEALS, 2015). Furthermore, there are other confounding 
factors that have made use of saliva in biomonitoring less widespread (Alves et al., 2014).  
 
Sweat has been used in the past to detect exposure to certain compounds. In a study by 
Omokhodion and Crockford (1991), researchers were able to detect lead in the sweat of 
humans, but there was a poor correlation between levels of biomarker in sweat and 
biomarker in blood. Furthermore, it is a matrix that is not easily available in high quantities 
and is difficult to collect (Esteban and Castano, 2009). Although sweat is not yet 
appropriate for quantitative estimates of exposure, use of sweat for noninvasive real-time 
monitoring of exposures is an active area of research.  



 
2.6 Study Design for Evaluating Exposures from Consumer Products  
A key challenge for CPSC staff is that population-level biomonitoring data such as NHANES 
will provide general information on the population distribution of exposure, but unless 
questionnaire data or paired environmental monitoring data is also available, this exposure 
cannot be directly tied to any specific products. Targeted exposure studies are needed to 
allow for attribution of exposure to specific products or classes of products, and these 
targeted studies have specific needs for both sampling approaches and data analysis.  
 
The study by Koch et al. (2014) provides a good example of a study design for assessing 
human exposure to personal care products.  The study involved recruiting eight volunteers 
who provided detailed information about the use of personal care products, recorded and 
weighed product use in a detailed diary and collected every urine void over a 6-day 
collection period. Because every urine void was collected over 24 hours and over multiple 
days, complete urine elimination of analytes of interest could be determined on a daily 
basis (mass excreted in urine).  This data could be matched with the exposures presumed 
from product labels, diary entries and weight of product used. This particular study also 
involved a 2-day washout period in which participants were provided replacement 
consumer products that did not contain the chemicals of interest.  Declines in urine 
concentration of the analytes of interest were observed and quantified using this study 
design, thus confirming the source of the exposures. 

3.0 Interpreting the Biomonitoring Data  
 
3.1 Overview  
Three types of data are needed to calculate exposures corresponding to measured 
biomonitoring data – (1) the biomonitoring data on a biomarker of interest, (2) chemical-
specific toxicokinetic data, and (3) human anatomy and physiology data. Calculations can 
be done using either forward or reverse dosimetry. Forward dosimetry involves calculating 
the biomarker level corresponding to a given exposure in an environmental medium. CPSC 
staff consider exposure reconstruction or reverse dosimetry, calculating the exposure 
level(s), specifically the internal dose, corresponding to a specified biomarker level.  
 
This section first addresses sources of biomonitoring data, followed by a discussion of 
concepts and equations used for reverse dosimetry. After the toxicokinetic concepts have 
been introduced in the context of the reverse dosimetry calculations, the text addresses 
sources of chemical-specific toxicokinetic data, as well as sources of anatomy and 
physiology data. Forward dosimetry is briefly addressed, followed by a brief discussion of 
guidance documents available for evaluating physiologically-based pharmacokinetic 
(PBPK) models. The section concludes with a discussion of methods for determining source 
contribution and considerations for addressing variability in biomonitoring data.  
 
3.2 Sources of Biomonitoring Data 
CPSC staff considers the source of biomonitoring data to determine whether it is relevant 
to the consumer population. Biomonitoring data can be derived from national data, 



regional/large cohorts, small cohorts, or individual data (also called case study data). 
Pooled datasets combine samples from multiple individuals within a cohort. National 
biomonitoring data are derived from nationwide datasets. In the US, the largest national 
biomonitoring survey is the National Health and Nutrition Examination Survey (NHANES) 
and is conducted by the Centers for Disease Control and Prevention (CDC). Other national 
surveys include the Canadian Health Measures Survey (CHMS) and the German 
Environmental Survey (GerES). The HBM4EU (Human Biomonitoring for the European 
Union) project is a cooperative transnational effort. For the purpose of this guidance, a 
regional or large cohort is defined as 100 individuals or greater. Several states, including 
California and Minnesota, have their own biomonitoring programs. Small cohorts are 
defined as biomonitoring data for between 2 to 99 individuals.  
 
3.3 Reverse Dosimetry Approaches 
3.3.1 Introduction to Reverse Dosimetry and Exposure Reconstruction 
As noted, reverse dosimetry is the process of back-calculating the exposure to a chemical 
(often via the oral route) that would be consistent with a measured biomonitoring level in 
humans.  This process relies on measured biomonitoring data, information about the 
toxicokinetics of the chemical of interest, and human anatomy and physiology data. There 
are many methods of conducting reverse dosimetry, ranging from very simple methods 
(mass balance approach) to very complex (PBPK model estimations). This section presents 
the major approaches for reverse dosimetry, and is followed in Section 3.4 by a discussion 
of the sources of data to use in the calculations.  
 
3.3.2 Urinary Mass Balance Approach  
The mass balance approach is a simple and commonly-used method of estimating daily 
intakes from biomarkers in urine. It is called the mass balance approach because it relies 
on the balance between the mass or moles of exposure (intake) and mass or moles of 
analyte (parent compound or metabolite(s)) excreted (eliminated) in urine.  The only 
toxicokinetic parameter required is urinary excretion fraction (Fue).  Fue is a unitless term 
that accounts for the fraction of a dose that is consumed or applied and is absorbed, 
metabolized and ultimately eliminated in urine in the form of the biomarker of interest 
(Fue=mass biomarker eliminated in urine/mass consumed of chemical of interest).  The Fue 
can be used when exposure is via the oral or dermal routes, and is a route-specific 
parameter, since it includes absorption via the relevant route. Note that this method cannot 
be used if there is substantial exposure via both the oral and dermal routes, because the 
oral and dermal Fue values would be different and thus it is an indeterminant problem. The 
one exception is if some information is available about the relative relationship between 
exposures from the oral and dermal routes, or the relative absorption from the two routes. 
Inhalation exposure is not usually addressed using the mass balance approach. (See Section 
3.3.3.)   
 
The mass balance approach assumes that steady state has been reached. This means that 
this approach may be inappropriate for using spot samples to estimate exposures to 
compounds that are rapidly eliminated, due to the high intra-individual variability with 



time, and the associated increase in uncertainty. (See Section 3.8 for a more detailed 
discussion of this issue.)   
 
Oral Exposures 
For compounds where the exposures are predominantly via oral ingestion (food, water, 
etc.), the solution to the mass balance equation is daily oral intake (amount consumed).  
Using the mass balance approach, daily oral intake may be calculated as follows (derived 
from Aylward et al., 2017):  

𝐷𝐷𝐷𝐷 = 𝐶𝐶∗𝑉𝑉 
𝐵𝐵𝐵𝐵∗𝐹𝐹𝑢𝑢𝑢𝑢

  Eq. 1 
 
Where: DI= Daily intake of the parent compound (mg/kg-day) 
              C= Biomarker concentration in urine (mg biomarker/L) 
              V= 24-hour urinary flow rate (L/day) 
            BW= Body weight (kg) 
            Fue= Urinary excretion fraction (mg biomarker excreted/mg parent compound 
intake) 
  
Urinary volume and flow vary from individual to individual due to differences in hydration 
status. There are several approaches to account for differences in hydration status, 
including adjustments based on creatinine excretion, osmolality (a measure of how 
concentrated the urine is), specific gravity and urine flow rate (L/hr). (See below for the 
equations and Section 3.8.1 for additional information on the implications of this 
adjustment for addressing variability.) Equation 2 is a mass balance equation that uses 
metabolite concentrations that are creatinine adjusted (derived from Koch et al., 2007):  
 

𝐷𝐷𝐷𝐷 = 𝐶𝐶𝑐𝑐𝑐𝑐∗𝐶𝐶𝑟𝑟𝑒𝑒 
𝐵𝐵𝐵𝐵∗𝐹𝐹𝑢𝑢𝑢𝑢

   Eq. 2 

Where: DI= Daily intake of the parent compound (mg/kg-day) 
               Ccr= Creatinine adjusted concentration of analyte in urine (mg biomarker/g 
creatinine) 
               Cre= creatinine excretion rate (g creatinine/day)  

BW= Body weight (kg) 
            Fue= Urinary excretion fraction (mg biomarker excreted/mg parent compound 
intake) 
 
Creatinine excretion varies with age, size, body weight, gender and race/ethnicity. 
Therefore, it is preferable to use a creatinine excretion rate that is directly relevant to the 
population of interest. For example, Koch et al. (2007) used body height and gender-based 
excretion data obtained from children of the same ethnicity as the children that provided 
urine for biomonitoring measurements, normalized to body weights of the individual 
subjects. They also conducted an alternative analysis based on age-specific data for daily 
excreted urine volume/kg body weight. 
 



Either spot samples or 24-hour urine composites can be used with the mass balance 
approach, regardless of whether the creatinine correction is used. When taking a 24-hour 
urine composite, the daily urinary volume is known, decreasing uncertainty. When taking 
spot samples, one must make assumptions on how much urine an individual produces in a 
day (i.e., L/day). In addition, the total urine volume in the spot sample may be unknown, 
making calculations based on creatinine-adjusted concentration particularly useful for spot 
samples (Mage et al., 2008). 
 
Dermal Exposures 
For chemicals for which exposures occur predominantly via dermal exposures, the mass 
balance approach will calculate daily dermally applied dose (µg/kg-day). As for the mass 
balance equation for oral exposures, calculating a dermally applied dose requires knowing 
the urinary excretion fraction for an analyte (parent compound or metabolite) following a 
dermal dose. Thus, although this approach is not very common, dermal exposure may be 
quantified using the following equation:  
 

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶∗𝑉𝑉
𝐵𝐵𝐵𝐵∗𝐹𝐹𝑢𝑢𝑢𝑢

   Eq. 3 

Where: DDD= Daily dermal dose (µg/kg-day) 
  C= Biomarker concentration in urine (µg/L) 
  V= 24-hour urinary flow rate (L/day) 
  BW = body weight (kg) 
  Fue = dermally derived urinary excretion fraction          
 
The dermal Fue is usually derived by comparing the oral and dermal bioavailability and 
then applying the relative bioavailability to the orally-derived Fue. 
      
Combined Oral and Dermal Exposure 
As noted, the Fue differs for the oral and dermal routes, since this parameter includes the 
absorption fraction via each route, respectively. This means that the mass balance 
approach cannot usually be applied if there are meaningful contributions from both routes. 
However, if there is information on the relative absorption via the two routes, or the 
relative internal dose from the two routes is known, then the amount of intake from the 
two respective routes can be calculated. Practically, this type of calculation requires 
information about relative exposures from the oral and dermal routes, such that a forward-
based conventional exposure assessment can be conducted.  In this situation, the 
biomonitoring data can be used to check the conventional exposure assessment. 
 
Inhalation Exposures 
There are no simple established approaches for back calculating air concentration from 
urinary biomonitoring data. In contrast to the oral and dermal routes, where the 
relationship between external exposure and internal dose is reflected in the absorption 
fraction (and incorporated into the Fue), the inhalation absorption at steady state is 
determined by the blood:air partition coefficient (US EPA, 1994).  
 



3.3.3 Exposure Conversion Factor Approach 
 
Because the mass balance approach cannot be applied for the inhalation route, exposure 
conversion factors (ECFs) are commonly used for inhalation reverse dosimetry, in addition 
to being used for oral reverse dosimetry. ECFs may be calculated using simple linear 
regressions to evaluate the relationship between exposure concentrations and biomarker 
levels in urine or blood. This is commonly done for inhalation exposures, since exposure 
conversion factors can often be calculated from occupational cohort data where exposures 
are well documented (Hays et al., 2012). ECFs are also frequently used with classical 
pharmacokinetic or physiologically-based pharmacokinetic (PBPK) models to establish a 
relationship between the biomarker of interest and the external exposure (concentration in 
air) or oral intake (e.g., Brown et al., 2015; Lee et al., 2017). This method assumes steady 
state (Lee et al., 2017) and that the dose-biomarker relationship is linear (Brown et al., 
2015). The ECF approach is needed when conducting reverse dosimetry calculations with a 
PBPK model because one cannot run a PBPK model “backwards.” In other words, a PBPK 
model can be used for forward dosimetry calculations, to determine the concentration of a 
biomarker corresponding to a specified external air concentration, but a PBPK model 
cannot directly calculate the air concentration or oral dose corresponding to a specified 
biomarker concentration for a reverse dosimetry analysis. In order to address this issue, 
the model is run for a range of external air concentrations or oral/dermal doses to 
establish the linear range for the dose-biomarker relationship, and then the ratio between 
the air concentration or oral/dermal dose and the biomarker can be determined. This ratio 
is the ECF:  

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑠𝑠𝑒𝑒
𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

   Eq. 4 

This equation may be rearranged to calculate an external exposure or intake dose level 
from a measured biomarker concentration. 
  

𝐴𝐴𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑙𝑙 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  Eq. 5 

The same general principle applies whether the exposure part of the ratio is the air 
concentration or an oral or dermal dose, and whether the biomarker portion is 
concentration of chemical in blood or urine. When used to interpret data from PBPK 
modeling, ECFs are generally applied to biomarkers in blood, because the model is 
designed to calculate the concentration in blood.  For example, the ECF approach was 
applied to steady-state solutions to chemical-specific PBPK or compartmental models for 
numerous chemicals (Aylward et al., 2010).  More complex approaches combined ECFs 
with Monte Carlo sampling to evaluate uncertainty and variability in the calculation (Tan et 
al., 2006; Liao et al., 2007; Huizer et al., 2014). 
 
3.3.4 Reverse Compartmental Model Approach 
Converting Compartmental Model Equations for Reverse Dosimetry 
Compartmental PK model equations may be rearranged to solve for daily absorbed dose. 
This approach can be used to estimate the external exposure and absorbed dose from 
internal samples such as blood, lipids, and tissues. This simple compartmental model 



operates under a steady state assumption and lumps metabolism and excretion together 
into a half-life term.  Any compartmental equation can be rearranged to solve for external 
dose. Egeghy and Lorber (2011) rearranged a one compartmental model to solve for 
external dose using serum2 concentration.  
 

𝑑𝑑(𝐶𝐶)
𝑑𝑑𝑑𝑑

= 𝐷𝐷(𝑡𝑡)
𝑉𝑉𝑑𝑑

− 𝑘𝑘 ∗ 𝐶𝐶(𝑡𝑡)   Eq. 6 

Where: D= Daily absorbed dose (mg/kg-day) 
               C= Serum concentration (mg/mL) 
               Vd= Volume of distribution (mL/kg) 
               k= First order elimination rate in the body (per day) 
 
Application of this equation assumes steady state. Understanding that input will equal 
output, and that the serum concentration is constant with time, allows one to rearrange the 
equations as follows: 

𝐷𝐷
𝑉𝑉𝑑𝑑

= 𝐶𝐶 ∗ 𝑘𝑘    Eq. 7 

One can then rearrange the equation to solve for D: 
 

𝐷𝐷 = 𝐶𝐶 ∗ 𝑘𝑘 ∗ 𝑉𝑉𝑑𝑑    Eq. 8 

The absorbed dose can be converted to a standard daily intake, external exposure, by 
dividing D by the absorption fraction.  
 

𝐷𝐷𝐷𝐷 = 𝐷𝐷
𝐴𝐴𝐴𝐴

    Eq. 9 

Where: DI= Daily intake (mg/kg-day) 
               D= Daily absorbed dose (mg/kg-day) 
 AF = Absorption fraction (unitless) 
 
Eq. 9 can be re-arranged to calculated the daily absorbed dose by multiplying the daily 
intake, external exposure, by the absorption fraction. When the absorption fraction is close 
to one, the absorbed dose is similar to the daily intake. 
 

𝐷𝐷 = 𝐷𝐷𝐷𝐷 ∗ 𝐴𝐴𝐴𝐴    Eq. 10 
 
Where: DI= Daily intake (mg/kg-day) 
               D= Daily absorbed dose (mg/kg-day) 
 AF = Absorption fraction (unitless) 
 
 

                                                        
2The same approach would apply for blood, serum or plasma.  



One can convert a variety of one compartmental model equations to reverse dosimetry 
equations, as shown in the following text.  
 
Calculating Daily Dose from Blood or Serum 
For some compounds, biomonitoring in blood is preferred because the compound is not 
readily excreted in urine (e.g., mostly excreted through bile and feces) and/or has a long 
half-life. This approach requires knowledge of the chemical’s distribution in the body 
(volume of distribution). Note that the volume of distribution must be specific to the matrix 
in which the biomarker is measured (e.g., blood vs. serum), since protein binding can affect 
this parameter. This reverse dosimetry approach operates under a steady state assumption 
and that assumes that elimination is a first-order process (Egeghy and Lorber, 2011; 
Fromme et al., 2007): 

𝐷𝐷 = 𝐶𝐶 ∗ 𝑘𝑘 ∗ 𝑉𝑉𝑑𝑑    Eq. 11 

Where: D= Daily absorbed dose (mg/kg-day) 
               C= Serum concentration (mg/mL) 
               Vd= Volume of distribution (mL/kg) 
               k= First order elimination rate in the body (per day) 
 
As above, the absorbed dose can be converted to a daily intake by dividing by the fractional 
bioavailability. 
 
In each of the equations above, the two terms for rate of elimination and volume of 
distribution are always multiplied by each other (kP*Vd).  This is also referred to as the 
clearance of a compound and is defined as the volume of the body (or blood or whichever 
body matrix/compartment that the compound is being measured in) that is cleared of a 
compound per unit of time (e.g., L/hr).  Thus, when clearance is known for a compound 
(e.g., has been published in the literature), this can be used in place of the k*Vd term, with 
appropriate adjustments for the units. Thus, in this case: 
 

𝑉𝑉𝑑𝑑  �𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑𝑑𝑑

� = 𝑉𝑉𝑑𝑑 �
𝐿𝐿
ℎ𝑟𝑟
� ∗ 1000𝑚𝑚𝑚𝑚

𝐿𝐿
∗ 24

1
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑑𝑑𝑑𝑑𝑑𝑑

  Eq. 12 

 
Calculating Daily Intake from Body Lipids 
To estimate daily intake of a biomarker with a half-life of days or weeks, it may be possible 
to sample body lipids. The following reverse dosimetry approach assumes steady state, 
that elimination is due to a first-order degradation process, that the substance distributes 
equally in body lipids, and if there are different biomarker isomers, that they exhibit no 
differences in toxicokinetic parameters (derived from Aylward and Hays, 2011; US EPA, 
2020b): 

𝐷𝐷𝐷𝐷 = 𝐶𝐶𝑙𝑙 ∗ 𝐹𝐹𝑙𝑙 ∗ 𝑘𝑘   Eq. 13 

Where: DI= chronic daily intake (mg/kg day) 
               Cl= lipid concentration (mg biomarker/kg lipid) 
               Fl= fraction of body weight that is lipid (assumed to be 25%) 



               k= elimination rate calculated from chemical half-life in lipids (ln(2)/half-life) 
 
3.3.5 Multi-Compartmental Model Approach 
New approaches for testing the toxicity of compounds using in vitro assays have created 
the need for developing approaches for extrapolating an assay concentration to some 
measure of external exposure so as to put those in vitro toxicity findings in an exposure 
context. One of the basic assumptions being made is that the cell culture (assay) nominal 
concentration is equivalent to blood or tissue concentration in vivo. A model is used to 
conduct reverse dosimetry to estimate an external dose that yields a “target” assay (blood) 
concentration in humans. The US EPA in collaboration with the NIEHS has developed 
methods for using toxicokinetic data to facilitate this in vitro to in vivo extrapolation 
(IVIVE). The same reverse dosimetry principles used for IVIVE apply to interpretation of 
data from biomonitoring in blood, since the in vitro chemical concentration is considered to 
be analogous to the concentration of the chemical in blood. However, as described later in 
this section, there are several caveats in using this approach to estimate human exposures, 
related to the assumptions in the model, and simplifications in the toxicokinetics. 
Importantly, the most commonly-described equations assume steady state, but urine is 
used much more frequently than blood for biomonitoring of chemicals. Perhaps because 
the focus has been on using such models for IVIVE of dose-response data and comparison 
with exposures estimated from urinary data in NHANES, no publications were located 
using the methods described here to estimate human exposures from concentrations in 
blood. Nonetheless, this approach does seem promising for future application for chemicals 
lacking appropriate human and animal toxicokinetic data.  

Several publications have described the use of in vitro data, sometimes supplemented by in 
silico data, in combination with generic compartmental models (Wetmore et al., 2012; 
Wetmore, 2015; Wambaugh et al., 2018). Models described in these papers are used in the 
US EPA’s HTTK package for IVIVE. The most commonly used generic multicompartmental 
model assumes zero-order uptake from the gut and 100% oral bioavailability. It includes 
three compartments – gut, liver, and the rest of the body. Removal from the body is based 
on renal clearance and hepatic metabolic clearance. The renal clearance is based on the 
glomerular filtration rate (GFR) and the unbound fraction of parent compound in the blood 
(Fub). Hepatic clearance is based on the intrinsic metabolic clearance CLint,h. It assumes first-
order clearance using a “well-stirred” approximation (i.e., assuming that the concentration 
of the chemical is uniform across the liver). Thus, this model can express the steady state 
concentration in blood using only standard physiological parameters and chemical-specific 
parameters that can be determined relatively easily in human cells in vitro.  

𝐶𝐶𝑆𝑆𝑆𝑆 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(𝐺𝐺𝐺𝐺𝐺𝐺∗𝐹𝐹𝑢𝑢𝑢𝑢)+�

𝑄𝑄𝑙𝑙∗𝐹𝐹𝑢𝑢𝑢𝑢∗𝐶𝐶𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖,ℎ
𝑄𝑄𝑙𝑙+𝐹𝐹𝑢𝑢𝑢𝑢∗𝐶𝐶𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖,ℎ

�
    Eq. 14 

Where: kdose= Dose rate (mg/kg-hour) 
               CSS= Blood Concentration in steady state (mg/L) 



               GFR= Glomerular Filtration Rate (L/hour-kg) 
               Fub= Unbound fraction of parent compound in the blood (unitless) 
               Ql= Liver blood flow (L/hour-kg) 
  CLint,h= Whole-liver intrinsic clearance rate (L/hour-kg) 
 
The equation for the steady state concentration can be rearranged to express daily intake 
(converting the dose rate from dose per hour to dose per day) as a function of the steady 
state blood concentration, standard physiological parameters, and chemical-specific 
parameters determined in vitro. Alternatively, Eq. 14 can be applied to determine the 
steady state concentration for a daily intake of 1 mg/kg-day (kdose = 0.042 mg/kg-hr), and 
the result can be used as a conversion factor for the measured biomarker concentration 
(Eq. 15). This latter approach has the advantage of being mathematically more intuitive, 
and is the approach used by the U.S. EPA for IVIVE:  
 

𝐷𝐷𝐷𝐷 =
𝐶𝐶 𝑥𝑥 1𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘−𝑑𝑑𝑑𝑑𝑑𝑑

𝐶𝐶𝑠𝑠𝑠𝑠
   Eq. 15 

 
Where: DI = Daily intake (mg/kg-day) 
    C = Biomarker concentration in blood (mg biomarker/L) 
   Css = Steady state concentration of biomarker in blood at a dose of 1 mg/kg-day, 
calculated using Eq. 14. 
 
Hepatic clearance per kg body weight may be derived from scaling human in vitro data 
(Ring et al., 2017): 
 

𝐶𝐶𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖,ℎ = 𝐶𝐶𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 ∗ ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗
𝐿𝐿

106 µ𝐿𝐿
∗ 60 𝑚𝑚𝑚𝑚𝑚𝑚

ℎ𝑟𝑟
    Eq. 16 

Where: CLint,h = Whole liver intrinsic clearance (L/hr) 
CLint= Intrinsic clearance rate measured from in vitro human hepatocytes (µL/min – 

million cells) 
               Hepatocellularity= millions of cells/kg of liver tissue 
               Mliver= Liver mass (kg) 
 
The fraction unbound is measured by measuring the chemical concentration in phosphate-
buffered saline (PBS) and dividing that value by the mean concentration in a matched 
plasma sample. The fraction in plasma can be used to calculate the fraction unbound in 
blood (Ring et al., 2017):  

𝐹𝐹𝑢𝑢𝑢𝑢 = 𝐹𝐹𝑢𝑢𝑢𝑢
𝑅𝑅𝑏𝑏2𝑝𝑝

   Eq. 17 

Where: Fup= Fraction of chemical unbound in plasma (unitless) 
 Fub= Fraction of chemical unbound in blood (unitless) 
               Rb2p= Constant ratio of blood to plasma concentration (see equation below) 
 



Rb2p may be derived using Schmitt’s Method (Schmitt, 2008 as cited in Ring et al., 2017):  
 

𝑅𝑅𝑏𝑏2𝑝𝑝 = 1 − 𝐻𝐻𝐻𝐻𝐻𝐻 + 𝐻𝐻𝐻𝐻𝐻𝐻 ∗ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅2𝑝𝑝 ∗ 𝐹𝐹𝑢𝑢𝑢𝑢   Eq. 18 

Where: Hct= Hematocrit (% red blood cells in blood) 
               KRBC2p= Partition coefficient between red blood cells and plasma 

Fup= Fraction of chemical unbound in plasma (unitless) 
 
The httk model, which is written in R and available at https://cran.r-
project.org/web/packages/httk/index.html implements the 3-compartment model 
discussed here, as well as 1-compartment, 2-compartment, and PBTK modeling.  It allows 
for the use of built-in chemical toxicokinetic parameters for hundreds of ToxCast chemicals, 
or user-added kinetic data. It allows for both reverse dosimetry and forward dosimetry 
(calculating internal tissue concentrations from an oral or intravenous dosing regime). The 
more user-friendly interface that is part of NTP’s Integrated Chemical Environmental (ICE) 
is not useful for reverse dosimetry of biomonitoring data. ICE includes preloaded 
toxicokinetic data for ToxCast chemicals, but the steady state concentrations are also 
preloaded and tied to specific assay responses.   
 
There are a number of limitations to this use of a compartmental model with chemical-
specific parameters measured in vitro, as described by Ring et al. (2017). At the most basic 
level, the high throughput in vitro assays often do not produce usable data. For example, 
Wetmore et al. (2012) were unable to detect any unbound chemical for 32% of the 
chemicals tested. Wetmore et al. (2012) also noted that their model did not include renal 
resorption, and that it assumed that hepatic clearance acts only on the fraction of chemical 
not bound to protein. Addressing either of these assumptions improved the predictivity of 
the model. Predictivity was also improved by incorporating an in vitro measure of 
bioavailability. 
 
There are some differences among the specific parameters in the various papers published 
on using httk and reverse dosimetry for IVIVE. This variability reflects ongoing refinements 
and improvements to the methods. For example, fub has been re-measured for some highly 
bound chemicals, due to difficulty in calculating fub for highly bound chemicals in early 
work. More recent work has also measured the blood:plasma ratio, a parameter that was 
not evaluated initially. In light of the ongoing improvements to httk and the associated 
parameters, it is best to use the most current version of httk for calculations, rather than 
extracting parameters and doing calculations using EXCEL spreadsheets. The most recent 
data are reflected in the most current httk version, while other sources of parameters, such 
as EPA’s CompTox Dashboard, may not have the most recent data (Ring and Wetmore, 
personal communication).  
 
Because the model assumes steady state blood concentrations, uncertainty is higher when 
evaluating intermittent exposures to rapidly excreted compounds, since they may not be at 
steady state. Section 3.8 addresses issues related to intra-individual variability in blood 
concentrations and approaches for addressing this variability. Because the model considers 

https://cran.r-project.org/web/packages/httk/index.html
https://cran.r-project.org/web/packages/httk/index.html


only first-order metabolism, it cannot account for enzyme induction or saturation of 
metabolic pathways (Wetmore et al., 2012). Wambaugh et al. (2015) tested the 
implications of the steady state assumption by replacing the assumption of a constant 
infusion dose with a dosing scenario of three daily doses, to better mimic exposure at meals 
or during consumer use. They found that, of 271 environmentally-relevant chemicals 
evaluated, 70% reached steady state within 28 days, and 90% reached steady state within 
1000 days. The exceptions were a few highly bioaccumulative compounds, such as 
polychlorinated biphenyls (PCBs), perfluorooctanoic acid (PFOA), and perfluorooctane 
sulfonic acid (PFOS). Wambaugh et al. (2015) also reported that for most chemicals, the 3-
compartment model could predict CSS with an accuracy similar to that of a more detailed 
perfusion-limited physiologically-based toxicokinetic model.  
 
Ring et al. (2017) used a modification of httk to prioritize chemicals for human health risk 
research. They developed a population simulation based on demographic and 
anthropometric quantities from NHANES, and used a Monte Carlo sampling approach to 
estimate the oral equivalent doses associated with activity measures (e.g., the AC50) from 
ToxCast assays. Exposure was estimated based on urine biomarkers in NHANES using a 
Bayesian approach, combined with far-field and near-field approaches for estimating 
exposure by product use class.  
 
Wambaugh et al. (2015) compared the steady state concentrations based on in vitro data 
with those inferred for humans from in vivo studies for 11 environmental chemicals and 74 
pharmaceuticals. The inferred in vivo results were calculated using a generic high 
throughput physiologically based toxicokinetic (HTPBTK) model that predicts non-steady 
state chemical time courses. They found a weak correlation between the predicted and 
observed results (R2 ~0.34), with a tendency for the predictions from in vitro data to 
overestimate the concentrations estimated from in vivo data. The authors stated that3 
results were within about a factor of 3 for 65% of the chemicals, while 28% of the 
chemicals overestimated the steady state concentration by ~6x, and 8% of the chemicals 
overestimated it by 120x.  The authors used the results to develop a triage framework 
providing information on the degree of confidence for the prediction for specific chemicals, 
and identifying chemical properties correlated with large deviations between observed and 
predicted behavior. The triage framework was then applied to 349 environmental 
chemicals and pharmaceuticals. They found that predictions were “on the order” for 140 
chemicals (40%), over- or underestimated by >3.2x for 72 chemicals (20.6%), and over- or 
underestimated by >10x for 38 chemicals (10.9%). Overestimation exceeded 
underestimation by ~10x. In addition, 19 chemicals (5.4%) were classified as not reaching 
steady state (and so no steady state concentration could be calculated), and the plasma 
binding assay failed for 80 chemicals (23%). Note that these categories are based on 
predictions from the triage elements, not calculated or measured steady state 
concentrations in vivo. 

                                                        
3 It is noted that the stated percentages add up to about 100%, but imply that all of the overestimates were 
either by 6x or 120x, an unlikely result. In addition, examination of Figure 4 of the paper suggests that there 
were several chemicals for which the literature value was under-estimated by large margins, particularly at 
higher steady state concentrations.  



 
Wambaugh et al. (2018) conducted an evaluation of the use of in vitro toxicokinetic data 
and IVIVE methods by comparing the results of the IVIVE analysis with in vivo toxicokinetic 
data from 45 chemicals, including more than 26 non-pharmaceuticals, and one-
compartment or two-compartment models. Some of their key conclusions were as follows: 

• Bioavailability varied substantially for the non-pharmaceutical chemicals, and was 
often over-estimated by the in vitro methods.  

• Total clearance was more underestimated for the nonpharmaceuticals than for 
pharmaceuticals. 

• The steady-state, peak, and time-integrated plasma concentrations of 
nonpharmaceuticals was estimated with “reasonable accuracy.” 

• The predictions of plasma concentrations improved when experimental 
measurements of bioavailability were included.  

• The combination of high throughput toxicokinetic methods and IVIVE was 
considered “sufficiently robust” to be use for prioritizing environmental chemicals 
based on health risk.  

• For a large number of the chemicals, the actual error in the prediction of the steady 
state plasma concentration was >10x higher than the error predicted using the 
method of Wambaugh et al. (2015). 

 
In considering the implications for using a similar approach to the IVIVE methods for using 
reverse dosimetry for interpreting human biomonitoring data, it is important to consider 
the problem formulations of the two approaches. First, Wambaugh et al. (2015) considered 
their approach adequate for prioritizing chemicals, in comparing potency estimates 
extrapolated from in vitro data with exposure estimates. This is a very different application 
from using biomonitoring data to estimate exposure. In particular, the two applications 
differ in the implications of conservative assumptions. Wetmore et al. (2012) stated that 
the simplifying assumptions associated with the multicompartmental model were all in the 
conservative direction. For example, overestimating bioavailability means that the 
estimated oral equivalent dose needed to reach a given steady state would be 
underestimated. If that dose estimate is used to establish an exposure limit or safe dose, 
underestimating the oral equivalent dose is health-protective. However, the same reasoning 
does not apply when using reverse dosimetry to estimate exposure. In that case, the 
overestimate of bioavailability would result in an underestimate of the dose resulting from 
a given scenario, which would not be a health-protective approach. In light of this 
conclusion and the overall uncertainty associated with the calculations, caution should be 
used in applying these methods. It is likely that the methods and available toxicokinetic 
parameters will continue to be refined. However, there is uncertainty associated with the 
use of in vitro toxicokinetic parameters and generic compartmental models for reverse 
dosimetry of biomonitoring data.  
 
3.4 Sources of Chemical-Specific Toxicokinetic Data 
3.4.1 Introduction 
A key challenge for appropriately interpreting biomonitoring data is the availability of 
appropriate chemical-specific toxicokinetic parameters. Data availability can determine the 



type of model used for reverse dosimetry. The mass balance approach for urine samples 
only requires knowledge of the Fractional urinary excretion (Fue). A simple one-
compartment pharmacokinetic model may require information on the absorption via the 
route of interest (oral, inhalation, dermal), the chemical’s half-life, and the fraction of 
excretion to the biomatrix of interest (e.g., urine, feces, exhaled breath, etc.) (Aylward et al., 
2012). A physiologically based pharmacokinetic model would require much more 
information but can be used to evaluate a variety of scenarios, including the time course of 
a biomarker under non-steady state conditions.  
 
Appendix Table B2 shows how reverse dosimetry studies reviewed for this guide have 
sourced their toxicokinetic data. Sources of toxicokinetic data include from human data, 
animal data, in vitro data, and in silico or modelled data.  
 
The following sections address sources of different types of chemical-specific toxicokinetic 
data, as well as strengths and weaknesses of data from different sources. 
 
3.4.2 Human In Vivo Data 
The ideal approach is to use human toxicokinetic parameters, since that minimizes the 
uncertainty associated with interspecies extrapolation. Human kinetic parameters can be 
obtained by searching the published literature or may be measured in the context of the 
biomonitoring study. Authoritative reviews, particularly Toxicological Profiles published 
by the Agency for Toxic Substances and Disease Registry (ATSDR), may provide relevant 
parameters, such as elimination half-life.   
 
Compared to using other types of data, human data come with fewer uncertainties. Human 
toxicokinetic data are not common due to ethical concerns. As discussed for biomonitoring 
data, it is important to evaluate how representative kinetic parameters are of the human 
population. However, in the case of kinetic parameters, the key consideration is whether 
the parameter is appropriate for the population group used for the biomonitoring study, 
rather than whether it is representative of the entire population. In practice, average values 
are often used for toxicokinetic parameters, but it is important to consider the variability of 
that parameter across the population. For example, Aylward et al. (2017) noted that the Fue 
for triclosan varies drastically among individuals (Fue ranged from 20-80%). This means 
that using an average Fue to calculate a daily intake will result in a narrower range of the 
population distribution of daily intake and an underestimate of high-end (upper-
percentile) intakes. To alleviate this uncertainty, one could either derive a Fue from the 
individual being analyzed or use simulated values with Monte Carlo sampling.  
 
Another challenge is that the Fue may not represent the entirety of a chemical’s elimination, 
if urine samples were not collected for long enough in the study where the Fue was 
determined. (Recall that the Fue is chemical-specific, and so an Fue determined in an 
intensive sampling study can be applied to variety of different biomonitoring studies 
conducted using different sampling strategies.) If urine voids were collected for less than 
five times the half-life of elimination, Eq. 19 can be used to extrapolate the urinary 
elimination to infinity (Poet et al., 2016). 



𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

�1−𝑒𝑒𝑒𝑒𝑒𝑒
�− 𝑙𝑙𝑙𝑙(2)× 𝑡𝑡𝑐𝑐

𝑡𝑡1 2⁄
�
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  Eq. 19 

Where: tc = total time of urine collection (hr) 
 mgurine = total mg of parent chemical excreted in the urine (as parent or metabolite) 
  
The Fue can then be calculated as the ratio of mg biomarker excreted/mg parent compound 
intake.  
 
3.4.3 Animal In Vivo Data 
Animal toxicokinetic data from controlled dosing studies have been used in reverse 
dosimetry studies if human toxicokinetic data are not available (Egeghy and Lorber, 2011; 
Fromme et al., 2007; Zhang et al., 2020). Although animal data can be incorporated into 
simple compartmental or mass balance analyses (Connolly et al., 2020; Zhang et al., 2020), 
it is more common for animal kinetic parameters to be incorporated into physiologically 
based pharmacokinetic (PBPK) models (Hubal et al., 2019). It is important when using 
animal data to ensure that this data is qualitatively and quantitatively relevant to humans.  
 
Animal data has the advantage of being easier to acquire than human data. Certain animal 
toxicokinetic parameters, such as hepatic clearance, may be allometrically scaled to be 
more relevant to humans (Miura et al., 2019; 2020). However, such scaling assumes that all 
important species-related differences are due to size-related quantitative differences in 
metabolism. Qualitative differences, such as differences in metabolic pathways are not 
accounted for, and such differences would make use of the animal parameter problematic. 
It is also important to note that some parameters, such as bioavailability, do not correlate 
well with body weight, and therefore do not scale allometrically (Espie et al., 2009). Espie 
and colleagues also noted potential modifications to allometric scaling, including 
accounting for differences in bile flow and glomerular filtration rate, although in practice 
such adjustments appear to be rare.  
 
The animal Fue can be used directly for reverse dosimetry (Health Canada, 2020; Zhang et 
al., 2020) if no human Fue or PBPK model is available. The animal Fue would be obtained 
from a study specifically measuring that parameter. It may be compiled as part of a 
chemical-specific review, such as an ATSDR profile, but no general compilation of animal 
Fue values was identified. As noted in the context of the human data, the Fue is based on the 
total amount of biomarker excreted, relative to a specified intake/dose of the chemical of 
interest. Therefore, if the urine collection time in the animal study is less than five times the 
half-life of elimination, the Fue should be extrapolated to infinity, using Eq. 19.  However, 
caution is warranted when using an animal Fue. The animal Fue can differ substantially from 
the human Fue, in part because of the different molecular weight cutoffs for glomerular 
filtration in rodents and humans. If an animal Fue is used, it is important to recognize that 
the uncertainty is generally higher than if the Fue were obtained from a human study, but 
the uncertainty is usually lower than when using human in vitro toxicokinetic data. 
However, no specific guidelines exist regarding use of animal Fues.  



 
The “triple pack” approach has been used to extrapolate from in vivo rat dermal absorption 
data to humans. This is done by multiplying the rat in vivo dermal absorption factor (DAF) 
by the ratio of the human and rat in vitro DAFs. That is: 
 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝐷𝐷𝐷𝐷𝐷𝐷 ∗ (ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝐷𝐷𝐷𝐷𝐷𝐷
𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝐷𝐷𝐷𝐷𝐷𝐷

)  Eq. 20 

However, Allen et al. (2021) recommended that the human in vitro DAF be used in 
preference to the triple-pack value. EFSA (2017) provided a tiered approach for estimating 
dermal absorption, starting with default data on closely-related products, then using in 
vitro human data, existing rat data, and the triple pack approach.  
 
3.4.4 In Vitro Data 
In vitro data from high throughput assays, sometimes supplemented by in silico data, have 
been used in reverse dosimetry applications (Wetmore et al., 2012; Wetmore, 2015; 
Wambaugh et al., 2018). As noted in Section 3.3.4, published applications have been 
primarily for IVIVE, but similar approaches could be used to interpret biomonitoring blood 
concentrations, recognizing the caveats discussed in 3.3.4.  
 
Wetmore et al. (2012) measured plasma protein binding using a high-throughput 
modification of the rapid equilibrium dialysis (RED) method. Similarly, they measured 
hepatic metabolism in vitro in primary human metabolites. Bioavailability was measured in 
a bidirectional permeability assay using Caco-2 cells, a cell line derived from a colon cancer. 
All of these assays were conducted using multiwell plates, facilitating high-throughput 
testing. Using these methods, a library of in vitro data for >900 pharmaceuticals and 
ToxCast chemicals has been developed and is part of the httk R package.  In another 
approach to using in vitro data, Zhang et al. (2018) calculated Fue values based on studies 
with human liver microsomes or S9 fractions. However, no studies were located 
quantitatively evaluating this approach relative to the use of in vivo data. In addition, it is 
not clear whether the Fue used in this approach includes absorption, since the authors 
described the Fue as “the fraction of OPs converted into their metabolites.” 
 
There are a number of advantages to using the in vitro data. The data are commonly 
derived from human cells, avoiding the need for interspecies extrapolation, and avoiding 
issues associated with animal testing. The data have also been collected in a standardized 
manner and are readily available in a library linked to a model for interpreting the data. 
However, as discussed in Section 3.3.4, the generic models for using in vitro data have a 
number of limitations and so should be used with caution. In contrast, allometric scaling of 
in vivo animal kinetic parameters such as the volume of distribution and clearance is a well-
established practice (e.g., Clewell et al., 2008; Mahmood, 2020), although allometry may 
not apply for chemicals with elimination half-lives on the order of months to year. Overall, 
when in vivo animal data are available, such data are likely preferable to in vitro human 
data (Wood et al., 2017). 
 



3.4.5 In Silico Data 
In silico, or modeled data are often used to estimate toxicokinetic parameters for PBPK or 
compartmental modeling. In particular, the httk model discussed in Section 3.3.4 makes 
extensive use of tissue to plasma partition coefficients calculated using Quantitative 
Structure Property Relationships (QSPRs). These tissue to plasma partition coefficients can 
be calculated using Schmitt’s method or other calculations (Pearce et al., 2017; Schmitt, 
2008). The tissue to plasma partition coefficients can then be combined with species-
specific tissue volumes to calculate the volume of distribution. Uncertainty in the in-silico 
estimates appears to be comparable to other risk assessment-related uncertainties. For 
example, Schmitt (2008) compared calculated and observed tissue to plasma partition 
coefficients for 14 tissues and 59 chemically-diverse drugs, and found that for 73% of the 
compounds analyzed, there was general agreement between the two values (less than a 3-
fold difference between both values), but that the levels of agreement between calculated 
and observed partition coefficients depends on the tissue being analyzed. In a separate 
analysis of the kinetics of tetrabromobisphenol A, Miura et al. (2020) used in silico methods 
to estimate the octanol-water partition coefficient and unbound fraction in plasma, and 
then calculated tissue:blood partition coefficients based on these two parameters. In a 
broad evaluation of how well PBPK and Quantitative Structure-Activity Relationship 
(QSAR) models predict the volume of distribution (primarily of pharmaceuticals), Mathew 
et al. (2021) found that global QSAR models outperformed the PBPK methods, but 
recommended that the best approach involves “strategic integration of in silico, in vitro, and 
in vivo methods.  
 
3.5 Sources of Anatomy and Physiology (A&P) Data  
Human A&P data include parameters such as body weight, urinary volume, cardiac output, 
creatinine excretion, and others. The values of these parameters are not chemical-specific, 
but they may vary across populations. Therefore, it is preferable to use A&P data from the 
same study (or the same study population) as used for obtaining biomarker measurements. 
Use of study-specific data has the advantage of directly tying biomonitoring data to the A&P 
data, but this is possible only if the study authors used the data, or the primary data are 
provided in a format that connects the A&P data to the biomonitoring data. If such data are 
not available, A&P data may be obtained from a variety of sources. Some analyses obtained 
parameters from studies specifically designed to measure the parameter of interest 
(“dedicated studies” in Table 1, such as van Haarst et al., 2004). Some of these studies (e.g., 
Mage et al., 2008; Levey et al., 2009) developed regression equations describing how the 
parameter of interest varies across different populations. Results from dedicated studies 
are useful for deriving generalizations that can be applied in situations where the relevant 
study-specific data are not available, while regression equations can be used to account for 
important sources of variability when individual subject demographic data are available, 
but data on a specific parameter (e.g., creatinine excretion) are not available for that 
population. The other major source of A&P data is from compilations published as 
consensus values as guidance for use in kinetic or PBPK modeling (e.g., Brown et al., 1997; 
US EPA, 2011; ICRP, 2002; ECHA, 2008a, 2008b). Appendix Table B1 provides additional 
illustrative examples regarding where reverse dosimetry studies have sourced their A&P 



data, particularly for cases where the parameter was obtained in the same study as the 
biomonitoring data. 
 
Table 1. Sources of Anatomy and Physiology Data 

Parameter Source Type Citation Example 
Body weight Same study Apel et al., 2020 
Body weight Compilation Institute of Medicine, 1998, 

as cited in Katsikantami et 
al., 2019 

Urinary volume pregnant 
women, adult women, 
toddlers) 

Compilation Health Canada, 2020 

Urinary volume (adults) Dedicated study Van Haarst et al., 2004, as 
cited in Aylward et al., 2017 

Urinary volume (children) Dedicated study Miller and Stapleton, 1989, 
as cited in Fromme et al., 
2014, 2016 

Urinary volume (children 
and adults), tissue volumes, 
growth rates 

Compilation ICRP, 20024, as cited in Cok 
et al., 2020; Institute of 
Medicine, 1998, as cited in 
Katsikantami et al. 2019; US 
EPA, 2011, as cited in Cao et 
al., 2016 

Creatinine excretion Regression equation based 
on individual’s gender, 
height, weight and age 

Mage et al., 2008, as cited in 
Aylward et al., 2017 and 
related papers; Cockcroft 
and Gault, 1976, as cited by 
Mage et al., 2008 

Creatinine excretion 
(adults) 

Compilation (textbook) Tietz et al., 2006, as cited in 
Qian et al., 2015 

Creatinine excretion 
(children) 

Dedicated study  Remer et al. 2002, as cited 
in Qian et al., 2015 and 
Koch et al., 2011 

Glomerular filtration rate 
(GFR) 

Dedicated study Rule et al., 2004, as cited in 
Wetmore et al., 2012 

Glomerular filtration rate 
(GFR) 

Dedicated study, predicted 
from age, race, sex, and 
serum creatinine 

Levey et al., 2009 

Body lipid mass Estimated from each 
individual’s height and 
weight 

Tay et al., 2019 

Physiological parameters for PBPK models 

                                                        
4 Cited by name of the editor, Valentine 



Parameter Source Type Citation Example 
Organ volumes, fractional 
blood flows, cardiac output, 
alveolar ventilation 

Compilation ECHA 2008a, 2008b, as 
cited in Jongeneelen and 
Berge, 2011 
Technical Guidance 
Documents for REACH 

Body weight, fractional 
blood flows to tissues, 
tissue volumes, cardiac 
output and many other 
parameters 

Compilation Brown et al., 1997 
(International Life Sciences 
Institute) 

Blood flow to tissues, 
volume of tissues 

Allometrically scaled using 
method of Clewell et al., 
2014 

Lin et al., 2020 

 
3.5 Forward Dosimetry  
Forward dosimetry analyses can be done by simply rearranging the equations presented in 
Section 3.3 to solve for the biomarker concentration. A common formal approach is to 
calculate Biomonitoring Equivalents (BEs) from existing toxicity reference values such as 
RfDs, and comparing the BE with the biomonitoring data. This approach has been used 
extensively by Health Canada to interpret biomonitoring data from the Canadian Health 
Measures Survey (CHMS) (Faure et al., 2020). 
 
3.6 PBPK Modeling Approaches   
As noted in prior Sections, PBPK modeling is frequently used when the available 
toxicokinetic data come from animal or in vitro studies. In brief, PBPK models describe the 
body as a series of compartments representing tissues or groups of tissues, with the flow 
rates, tissue volumes and metabolic parameters based on the physiology of the species of 
interest. Guidance is available for evaluating PBPK models (US EPA, 2006; IPCS, 2010; 
McLanahan et al., 2012). As noted by Caldwell et al. (2012), there are two types of 
uncertainty associated with PBPK models. Model uncertainty “refers to the lack of 
knowledge needed to determine whether the scientific theory on which a model was based 
is correct.” Parameter uncertainty “refers to the lack of knowledge about the values of a 
model’s parameters which leads to a distribution of values for each parameter” (Caldwell et 
al., 2012). Models may be inaccurate when they are not fit for purpose, or the logic behind 
the model does not correspond with the pharmacokinetics of a toxicant in the body.  
                
3.7 Determining Source Contribution to External Exposure 
As noted in the introduction, CPSC staff use biomonitoring data not simply to estimate 
exposure, but as part of a broader consideration of whether there is a plausible connection 
between the measured exposure and the occurrence of the chemical in specific product(s). 
Evaluation of this broader issue requires integrating the exposure estimate calculated from 
biomonitoring data using reverse dosimetry with exposure estimates from a combination 
of source-based models. As described in further detail in the rest of this section, this 
integration can be qualitative (based on an association of the biomonitoring-based 



exposure estimate with the use of certain products), or quantitative (based on a 
comparison of the biomonitoring-based exposure estimate with estimates of exposure 
from specific sources, such as diet and household dust).  
 
3.7.1 Qualitative Approaches 
Qualitative approaches evaluate the association between the biomarker and exposures to 
specific product sources and/or other sources, such as consumption of certain foods and 
intake from the environment. In these cases, the biomarker measurement is quantitative, 
but the consideration of exposure from different sources (forward dosimetry) is evaluated 
on a yes/no basis. Questionnaires can be used to obtain individual-level data on the uses of 
products with specific materials or consumption of specific foods. For example, Smith et al. 
(2021) conducted a study of 100 adolescent girls to evaluate the potential for exposure to 
several phthalates and bisphenol A (BPA) based on family practices such as: 

• the use of plastic containers to store food,  
• microwaving in plastic,  
• the presence of linoleum or vinyl floors at home,  
• plastic or vinyl shower curtains, as well as  
• recent consumption of certain foods, drinks, or any canned items, receipt contact, or 

consumption of fast foods.  
 
Urinary levels of the phthalates and phthalate metabolites and of BPA were evaluated. 
Rather than using reverse dosimetry to estimate internal dose, the authors compared the 
biomarker measures with a nationally representative sample, after adjusting for age, BMI 
and time since last meal. These data were used to evaluate the association between the 
various exposures evaluated in the questionnaire and the chemicals of interest. A strength 
of this study is that urinary biomarker data were connected to data on product and food 
exposures on an individual level. However, given the short half-life of elimination of 
phthalates and BPA in urine and episodic exposure events associated with these types of 
products, the concentration of these analytes in urine are expected to be highly variable 
(Preau et al., 2010). For instance, for compounds such as BPA and di(2- ethylhexyl) 
phthalate (DEHP), Preau et al. (2010) found that the concentration of BPA and the DEHP 
metabolites in urine can vary up to 1000-fold within an individual within a single day.  For 
these reasons, these types of studies would benefit from collecting more than a single spot 
urine sample.  24-hour voids or even longer would help identify potential associations 
between urinary concentrations of the analytes and exposure sources (Koch et al., 2014).   
 
Oya et al. (2021) used a similar approach to evaluate the relationship between the urinary 
biomarkers of neonicotinoids in young children and behaviors related to various potential 
consumer product exposures, foods consumed, or method of food preparation. Urine was 
collected in an overnight diaper, and measurements were corrected for creatinine 
concentration and for absorption of the biomarker by the diaper material. This approach 
allowed for analysis of exposure of very young children in a non-invasive manner.   
 



3.7.2 Quantitative Approaches 
Several publications have used biomarker data in combination with forward dosimetry 
estimates of exposure to evaluate the potential contribution of different sources to the total 
exposure. Consideration of some of these examples in further detail illustrates some ways 
that CPSC staff can use biomarker data in combination with other exposure information, as 
well as some potential pitfalls in the analyses.  
 
In an early application of the approach, von Goetz et al. (2010) estimated exposure to BPA 
for several different age groups from a variety of different food sources and products, 
including polycarbonate (PC) baby bottles and household dust. The total exposure 
estimated from these sources was compared with an aggregate exposure estimate based on 
national biomonitoring data (apparently using spot sampling) and reverse dosimetry, using 
an Fue of 1. The authors found good agreement between the two approaches for adults, but 
that the total dose estimated for children and toddlers based on known sources was about 
half the estimate based on biomonitoring data. This relatively small difference may reflect 
uncertainty and variability in the biomonitoring data, or may indicate that an important 
source has not been accounted for. The authors did not provide information on the 
variability in the daily dose rates, making it impossible to fully consider the significance of 
the difference in estimated doses. 
 
Cao et al. (2016) conducted a similar comparison between exposure estimated from 
environmental media and food, and that estimated from urinary concentrations, for di(2-
ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and diisobutyl phthalate (DiBP). 
The exposure scenario-based approach was based on measurements in various regions of 
China. Monte Carlo simulation was conducted to estimate a distribution of total exposure 
from the various sources. The biomonitoring data came from a national survey of 203 
(presumably spot) urine samples, and metabolite-specific Fue values were applied. 
Although the biomonitoring sample size reflects a large cohort, the number is relatively 
small for a national survey. The authors found that the median intake from the two 
methods were roughly comparable for DEHP and DBP, but that the exposure estimates for 
DiBP from the scenario approach were about 1/3 that from the biomarker-based approach. 
Incomplete information was provided regarding the distributions for DiBP, making 
independent interpretation of the data challenging. The study authors suggested that the 
lower estimate in the scenario approach for DiBP may reflect other exposure pathways that 
were not part of the calculation, such as cosmetics, detergents, pharmaceuticals, or medical 
devices. 
 
In a similar analysis, Fong et al. (2014) compared the daily intake of DEHP estimated based 
on urinary levels in a group of exposed workers with the daily intake estimated from 
personal air monitoring. They found that inhalation exposure contributed about 21% of 
total intake for workers in a high-exposure group, and about 5% in a low-exposure group. 
 
Levasseur et al. (2021) evaluated exposure in 203 children from 190 families (a “large 
cohort”), using measurements from hand wipes, wristbands, spot urine samples, household 
dust, and household questionnaires. Three spot urine samples were collected over a 48-
hour period, and a composite urine sample prepared from all three samples. The specific 



gravity of this composite sample was measured, and the sample was evaluated for the 
biomarkers of interest. Analyses were conducted with the specific gravity corrected 
biomarker concentrations. This approach of multiple spot samples is an improvement over 
a single spot sample, but the authors did not provide sufficient information on the timing or 
spacing of the three samples to determine the degree to which the sampling approach 
approximates a 24-hour sample. Correlation analyses found many of the expected 
correlations between exposure sources and urinary biomarker levels. However, the 
authors also found that concentrations of triclosan in dust correlated significantly with 
urinary levels, as well as with exposures measured via wristband and handwipes. This 
result suggests that a source of triclosan other than personal care products may be 
important for children, since use of triclosan in soap would not be expected to be 
associated with triclosan in household dust.  
 
At a more general level, Eichler et al. (2021) developed a modular mechanistic framework 
for predicting human exposure to semivolatile organic compounds (SVOCs). This 
framework is useful because, unlike volatile organic compounds (VOCs), SVOCs partition 
among multiple indoor compartments. Their approach provides a mechanistic framework 
for evaluating exposure scenarios for different source emission categories (SECs), with the 
goal of supporting high-throughput exposure estimates. The authors described mechanistic 
models, or process-based models, as ones that “rely on well-established physicochemical 
processes such as diffusion or sorption.” The authors characterized SECs as solid, soft, 
frequent contact, applied, sprayed, or high temperature. Depending on the SEC, there is the 
potential for transport resulting in direct contact exposure, or emission to one of the 
environmental compartments (outdoor contributions, gas phase, airborne particles, dust, 
indoor surfaces, clothing). Mass transfer may occur between these compartments, 
ultimately resulting in “mediated exposure” via dermal uptake, inhalation, or ingestion. 
Equations and parameters were provided for estimating the transfer among compartments 
and estimating the resulting exposure. Exposures estimated with this sort of model could 
be used together with biomonitoring data to improve the estimates of the contribution of 
various sources to the overall exposure. Several other models are available to estimate 
exposure from consumer products. These include ConsExpo, developed by the RIVM 
(RIVM, 2017), the U.S. EPA’s Consumer Exposure Model (CEM; U.S. EPA, 2019), as well as 
several other consumer models developed by the U.S. EPA and others.  
 
Overall, these quantitative approaches can be used to determine important sources, and 
whether key exposure sources remain unaccounted for. As noted above, von Goetz et al. 
(2010) and Cao et al. (2016) drew conclusions based on differences in exposure estimates 
on the order of 2-3x.  
 
When comparing exposure doses estimated using reverse dosimetry and aggregate 
exposures estimated from multiple sources using forward dosimetry, consideration of 
variability and uncertainty of the exposed group is important. CPSC staff recommends that 
a range of exposure estimates are generated for both approaches, if sufficient data are 
available. CPSC staff also recommends documentation of the approach and associated data 
sources. This information provides context for comparisons across multiple approaches 



and associated use in risk assessment and risk management decisions. See Table 2 for 
potential outcomes.  
 
Table 2. Examples of outcomes when comparing reverse dosimetry and forward-
dosimetry aggregate exposure (FDAE) from multiple sources 

Outcome Potential Explanation  
FDAE distribution is less than and does 
not overlap with Reverse Dosimetry 
Distribution  

FDAE has likely not considered enough 
potential exposure source categories  

Reverse Dosimetry Distribution is less 
than and does not overlap with FDAE 
Distribution 

FDAE is likely aggregating exposure from too 
many sources; potential uncertainty in reverse 
dosimetry 

Reverse Dosimetry and FDAE ranges 
overlap 

Interpret both distributions and characterize 
associated variability and uncertainty; 
Characterize the magnitude of the difference 
of the central-tendency exposure estimate 

 
 
3.8 Addressing Variability 
3.8.1 Variation Related to Hydration Status 
Differences in hydration status can have a substantial impact on the urinary flow rate, and 
thereby on the concentration of a biomarker in the urine. As noted in Section 3.3.2, a 
common approach for accounting for this variation is adjusting the concentration based on 
the creatinine concentration in the urine. This adjustment is based on the observation that 
the creatinine concentration varies less than the urinary flow rate, but creatinine excretion 
is not constant. For example, children excrete less creatinine relative to body weight than 
do adults. Creatinine excretion also varies systematically with dietary pattern, between 
lean and obese people, and across racial and ethnic groups. These limitations to creatinine 
adjustment have led to other adjustments to reflect hydration status, including adjustments 
based on osmolality (a measure of how concentrated the urine is), specific gravity and 
urine flow rate (L/hr). 
 
Since 2009, NHANES has collected information on the volume of the complete urinary void, 
as well as the time since last void. This allows for the calculation of the urinary excretion 
rate of the analyte over the time period covered by the void, thus addressing the issue of 
hydration status without requiring the use of a surrogate such as creatinine concentration. 
The excretion rate is calculated using the following equation: 
 

𝐸𝐸𝐸𝐸 = 𝐶𝐶∗𝑉𝑉
𝑡𝑡

   Eq. 21 

Where:  ER = Excretion rate (ng/hr) 
                C = Concentration of biomarker in urine (ng/mL) 
                V = measured urinary composite void volume (mL) 
                t = time since last void (hours) 



 
This relationship can also be expressed relative to body weight: 
 

𝐸𝐸𝐸𝐸 �𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘
− ℎ𝑜𝑜𝑜𝑜𝑜𝑜� = 𝐶𝐶∗𝑉𝑉

𝑡𝑡∗𝐵𝐵𝐵𝐵
   Eq. 22 

Where:  ER = Excretion rate (ng/kg-hr) 
                C = Concentration of biomarker in urine (ng/mL) 
                V = Measured urinary composite void volume (mL) 
                t = Time since last void (hours) 
           BW = Body weight (kg) 

 
In these equations, the term V/t and V/(t x BW) describe the urinary flow rate (UFR, 
mL/hour) and body weight-adjusted urinary flow rate (UFRBW, mL/kg-hour), respectively.  
 
Hays et al. (2015) used NHANES data to evaluate the relationship between UFR and 
UFRBW with age, sex, race/ethnicity, and body mass index (BMI). They found strong 
systematic variation in UFRBW with age, race/ethnicity and BMI, and in UFR with age, sex 
and race/ethnicity. In particular, they noted that urinary osmolality (a measure of urinary 
concentration) increases with BMI in all age categories, suggesting that urine is more 
concentrated on average in people with a higher BMI. These systematic variations had a 
substantial impact on case studies evaluating the relationship between chemical exposures 
and BMI. For example, the (unadjusted) urinary concentration of 2,5-dichlorophenol (2,5-
DCP) increased with BMI. The trend remained when the concentrations were adjusted by 
osmolality to account for hydration status, but not when a creatinine adjustment was 
applied. The trend also remained for the mass excretion rate, but not for the body weight-
adjusted mass excretion rate. The authors suggested that the systematic variation of UFR 
with BMI could result in “reverse causation,” leading to misinterpretation of biomonitoring 
data. That is, rather than the exposure causing the health outcome, the health outcome of 
obesity (or, more broadly, obesity-associated disease) increases the biomarker 
concentration through the reduced UFR. Thus, there was an association between 2,5-DCP in 
the urine based on mass excretion rate, but not based on body-weight adjusted mass 
excretion rate.  
 
Although the Hays et al. (2015) analysis focused on the relationship between biomarkers 
and effect measures, rather than reverse dosimetry, it also has implications for using 
urinary biomarkers to estimate exposure. The authors recommended that future analyses 
of health outcomes using urinary biomarker data should be conducted not only based on 
biomarker concentration, but also on the basis of mass excretion rate (ng/hr and ng/kg-
hr). They also recommended that the evaluation include a clear hypothesis regarding “the 
relationship between exposure pathway, exposure metric and health outcome.” For 
example, body weight would be expected to have a different impact when food is an 
important exposure source (since food intake may scale with body weight) than in 
situations where inhalation is a primary source (since inhalation intake does not scale 
directly with body weight). Similar considerations would apply in applying reverse 
dosimetry to interpret urinary biomarker data.  



3.8.2. Intra-individual Variability, the Relationship to Half-Life and Population Distribution 
As noted earlier in this guidance, it is important to distinguish between intra-individual 
variability (related to variability in timing of sample collection relative to exposure event) 
from inter-individual variability (related to differences in physiology or differences in 
actual exposures). This is particularly important when using data from spot urine samples 
(instead of 24-hour composite samples) to evaluate chemicals with short half-lives.  
 
Aylward et al. (2012) conducted a detailed evaluation of the relationship among half-life, 
sampling time and measured variability. They found that the population distribution of 
biomarker concentrations is a function of the ratio of the elimination half-life and the 
exposure frequency (i.e., interval between repeated exposures). A larger ratio results in 
less variability, while a smaller ratio results in larger variability (Figure 1). This means that 
the intra-individual variability resulting from sampling at different times in the elimination 
curve can be a key driver of the apparent population variability. In the simulations 
conducted by Aylward and colleagues, they found that if the elimination half-life is less than 
¼ - ½ the exposure interval, the P95:P50 ratio of the biomarker concentration was wider 
than the population variability in the dose rates used to calculate the biomarker 
concentrations. Conversely, as the half-life approaches the duration of the exposure 
interval, the predicted biomarker concentration either approaches the variability in the 
underlying dose distribution (for a constant dose rate scenario) or is less than the 
variability (for a varying dose rate scenario). The lower biomarker concentrations in the 
latter case reflects the averaging out of the biomarker concentrations over time when 
“elimination is slow enough (relative to exposure interval) to provide an integrated 
reflection of exposure events including those preceding the most recent event.”  
 



 
Figure 1: Simulated biomarker concentration vs. time curves for a repeated unit dose at a consistent interval 
assuming different values for half-life of elimination(HL) as a fraction of the exposure interval, τ. 

 
Similarly, Bradman et al. (2012) found that urinary spot samples of organophosphate 
metabolites in children varied widely over the course of a week. If the concentration was 
elevated in a spot sample, it was likely that the child’s exposure over the course of the week 
was elevated, but a single spot sample did not necessarily detect children with elevated 
exposures. These results are consistent with observation that most of a decay curve will be 
at concentrations below the time-weighted average.  
 
Intraclass Correlation Coefficient (ICC) 
The results of Aylward et al. (2012) mean that the variability in the population distribution 
may be over-estimated when the half-life is short relative to the exposure frequency. This 
over-estimation is of concern because exposure estimates often focus on the high end of the 
population distribution (e.g., the 95th percentile). The intraclass correlation coefficient 
(ICC) provides an approach for quantifying the relative contribution of intra-individual 
variability and inter-individual variability, and for calculating a better estimate of the 
overall population variability. The ICC is defined as the ratio of the logged variance 
between subjects and the total logged variance (Pleil and Sobus, 2013; Casas et al., 2018): 
 



𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜎𝜎𝛼𝛼2

𝜎𝜎𝛼𝛼2+𝜎𝜎𝜀𝜀2
   Eq. 23 

Where: 𝜎𝜎𝛼𝛼2 = between subject logged variance 
               𝜎𝜎𝜀𝜀2 = within subject logged variance 
 

An ICC can range between 0 and 1. An ICC of 0 means that 100% of the variability is due to 
intra-individual variability. In other words, biomarker measurements from spot sampling 
of any given individual may be any value across the entire distribution, and so a single spot 
sample is not a good estimate of the individual’s mean exposure. Conversely, an ICC of 1 
means that repeated measurements of an individual will stay the same, and so both the 
individual mean, as well as the population mean and distribution are well-characterized.  
 
Pleil and Sobus (2013) described a method for estimating the distribution of long-term 
average exposures from a distribution of spot biomarker measurements using the ICC. 
They described three tiers of information for estimating the ICC. In Tier 1, no information is 
available on the ICC, and so the only option is to bracket the exposure estimates with the 
ICC bounds of 0 and 1. In Tier 2, the ICC can be inferred from other data, based on research 
experience or similarities to other chemicals.  The choice of surrogate should be informed 
by similarities in half-life of the compound within humans and the exposure timing (e.g., 
similar with respect to presence in food, water, air, etc.).  Pleil and Sobus (2013) 
recommended that Tier 2 estimates be treated with caution, and that in the absence of 
“articulated” repeated measurements, the most conservative assumption of m = 2 
measurements/subject be used. Tier 3 requires an intensive sampling protocol that allows 
development of a robust ICC, as described by Aylward et al. (2017). (See Appendix A1).  
 
As an example of Tier 1 bounding, consider a hypothetical distribution where there is one 
biomonitoring measurement per person from a group of 220 individuals, where the 
distribution of samples has a geometric mean GM = 1155 ng/L and geometric standard 
deviation GSD = 2.84 ng/L. If the ICC equals 1, there is no within-subject variability, and the 
measured GM and GSD are the GM and GSD of the distribution of long-term average 
exposures for the population.     
 
At the other extreme, if the ICC equals 0, this means that all of the variability is due to intra-
individual variability. In this case, the population GSD needs to be calculated based on the 
sample size: 
 

𝑆𝑆𝑆𝑆𝑆𝑆 =  𝐺𝐺𝐺𝐺𝐺𝐺
√𝑁𝑁

=  2.84
√220

= 0.19   Eq. 24 

 
𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆𝑆𝑆𝑆𝑆) = 1.21  Eq. 25 

 



Thus, if the ICC is 0, the GSD of the distribution of long-term average exposures is much 
smaller than the measured GSD, since the measured variability reflected both the intra-
individual and inter-individual variability5.  
 
In Tier 2, the GSD can be calculated using the following equation: 
 

𝐺𝐺𝐺𝐺𝐺𝐺 =  𝐺𝐺𝐺𝐺𝑔𝑔 ∗ (𝐼𝐼𝐼𝐼𝐼𝐼(𝑚𝑚) ∗ (𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚) +  𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  Eq. 26 

 
Where: σ = standard deviation of logged data (used to calculate GSDg, which is used 
to calculate Xmin and Xmzx) 
  μ = mean of logged data (used to calculate GMg) 
 GSDg = exp (σ) = “global” geometric standard deviation of the initial data set 
 GMg = exp (μ) = “global” geometric mean of the initial data set 
 Xmin = exp {ln[GSDg]/sqrt(m)}/GMg when ICC = 0 
 Xmzx = GSDg/ GMg when ICC = 1 

 
The Case Study 4 (triclosan) tab in the supplemental spreadsheet illustrates the calculation 
of the GSD for various combinations of ICC and m. (See rows 13 and 14 for ICC and m; rows 
16 and 17 for calculation of Xmin and Xmax; and cells C8, D8 and E8 for calculation of the GSD. 
Use of the calculated GSD to calculate the 95th percentile is illustrated in Appendix A4.  
 
Pleil and Sobus (2016) extended the ICC method to estimate the central tendency for an 
individual from a single spot sample and information on the ICC and population summary 
statistics (geometric mean and geometric standard deviation). Mathematically:  

𝐺𝐺𝑀𝑀𝑖𝑖 = � 𝑋𝑋𝑖𝑖
𝐺𝐺𝐺𝐺
�
𝐼𝐼𝐼𝐼𝐶𝐶𝑦𝑦

∗ 𝐺𝐺𝐺𝐺   Eq. 27 
Where: GMi= Predicted geometric mean for any single measurement 
     Xi= Single measurement concentration 
      GM = Geometric mean for the population distribution 
 ICC= Intraclass correlation coefficient 
     y= slope factor (most likely 1/2: See Pleil and Sobus, 2016) 
 
The GMi can then be used in reverse dosimetry calculations instead of the individual’s 
exposure concentration. 
 
Table 3 shows an approach for using the ICC to categorize the reliability of using a sample 
to represent the average exposure (derived from Rosner, 2011 as cited in Casas et al., 
2018). 

 
Table 3. Reliability of urine sample to estimate long term exposures. 

ICC Reliability 
                                                        
5 Pleil and Sobus (2013) refer to this as the best case risk scenario, since the tighter population distribution 
results in fewer people exceeding an exposure benchmark. However, as noted in Table 3, the reliability of 
sampling schemes with lower ICC is lower.  



<0.40 Poor 
0.40-
0.59 

Fair 

0.60-
0.74 

Good 

≥0.75 Excellent 
 

Note that a high ICC alone may not be sufficient for determining the adequacy of a sampling 
procedure. For example, the population distribution may not be fully characterized if there 
is seasonal or other longer-term variation in exposure (Aylward et al., 2017).  

 
The ICC is positively correlated with the compound’s half-life in the body (Aylward et al., 
2017). For example, the authors found that triclosan (half-life of 10 hours) has a 
substantially higher ICC than BPA (half-life of 4-6 hours). The nature of the exposure (e.g., 
widespread vs. highly variable based on product use) also affects the ICC. (Aylward et al., 
2017). The ICC may be affected by the nature of exposure as well. For instance, BPA has a 
low ICC because it is generally orally absorbed and its exposure is widespread across the 
population, decreasing the variability of exposure between individuals (Aylward et al., 
2017).  

 
Implications of Variability for Spot Sampling Design 
The ICC can be increased by taking multiple samples from each individual, thereby 
increasing exposure estimation reliability. This raises the question of how many samples 
are needed to adequately assess exposure. Casas et al. (2018) used the Spearmen Brown 
equation to determine the number of samples needed to reach a specific ICC:  
 

𝜌𝜌𝑚𝑚 = 𝑚𝑚∗𝜌𝜌
1+(𝑚𝑚−1)𝜌𝜌

   Eq. 28 

Where: 𝜌𝜌 = ICC for one sample/pool 
               m = number of samples per individual needed 
               𝜌𝜌𝑚𝑚 = target ICC 
 

Another approach is based on the coefficient of variation of repeated urinary 
concentrations (Li et al., 2020). These authors described the minimum number of spot or 
first morning void urine samples required to predict participant-specific mean 
concentration to be within 20% of the “true” values with a probability of 95% using the 
following equation: 

𝑘𝑘 = �1.96 ∗ 𝐶𝐶𝐶𝐶
20
�
2

   Eq. 29 

 Where: k = the minimum number of samples, as described in the text above 
      CV= the coefficient of variation of the log transformation (χ + 1) of measured 
concentrations  
 



A challenge with approaches based on specific ICC values or the variation in a specific study 
is that the variability measure is tied to a specific study population, sampling scheme and 
method used to standardize urine concentrations. To address this issue, Verner et al. 
(2020) developed the Biomarker Reliability Assessment Tool (BRAT), freely available 
(currently as beta version) for download at https://www.magnoliasci.com/brat. User-
specified inputs include biological half-life, intra-individual and inter-individual variability 
in exposure, exposure pattern, exposure period of interest, timing of sample collection, and 
standardization approach for urine dilution. The tool used a pharmacokinetic model, 
together with Monte Carlo sampling. Urine parameters (urine volume, time of urination, 
creatinine urinary concentration and urine specific gravity) were obtained from four men 
and four women, and the sampling approach randomly selects one of the eight individuals. 
The tool generates profiles of intake, internal dose, and urinary concentrations over the 
period of interest, and these profiles can be used to identify an appropriate sampling 
scheme. 
 
3.8.3 Overall variability 
The above discussion on variability has focused on the variability in individual parameters 
in the reverse dosimetry calculation. However, it is noted that overall population variability 
reflects the variability in these components, but is not a simple product of the component 
variability. A common approach for estimating the overall variability would be to conduct 
Monte Carlo sampling, based on the distributions for each parameter in the reverse 
dosimetry calculation, and use the sampling results to obtain an overall distribution of the 
estimated intake.  

4.0 Case Studies   
 
The case studies presented in Appendix A illustrate the principles presented in this 
guidance with specific chemical examples, and are accompanied by a spreadsheet that 
includes the actual equations. The case studies were chosen to illustrate the use of data 
from a diversity of sources and types of biomarkers. For each case study, the sources of the 
three data types (biomonitoring data, chemical-specific toxicokinetic data, and A&P data) 
are documented, followed by presentation of the equation(s) used for the reverse 
dosimetry calculation. The case studies illustrate (1) calculation of daily intake based on 
urinary spot sampling, (2) calculation of daily absorbed dose based on concentration in 
blood, and (3) use of in vitro toxicokinetic parameters to estimate daily intake from a 
concentration in blood. In addition, information is presented on the use of the ICC to refine 
the estimation of a population distribution from spot samples. 

5.0 Conclusions and Recommendations 
 
This section summarizes best practices across data types, based on a review of reverse 
dosimetry publications. (See Appendix B for summary tables.) The appropriate biomatrix 
for analysis depends strongly on the chemical half-life, and the analytical approach is often 
determined by the available data. The focus here is on simple compartmental models, due 
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to their ease of application. However, it is noted that in general, properly-validated PBPK 
models will improve the accuracy of the estimation. PBPK models are also the only way to 
address certain types of chemicals and metabolic issues. If toxicokinetic parameters are 
only available for an animal model, but other estimates of human metabolism (e.g., from in 
vitro studies) indicates substantial interspecies differences in metabolism, a PBPK model 
may be needed. In addition, simple compartmental models cannot address induction or 
saturation of metabolism; a PBPK model would be needed to address these situations, 
although induction or saturation is less likely to be a concern at environmentally-relevant 
exposure levels. With those caveats, several generalizations are still possible. 

5.1 Urine as a Biomatrix 
Urine is the preferred matrix for chemicals with a relatively short half-life. Sampling is non-
invasive and methods for interpretation of urine data are well-established. Collection of 24-
hour (or longer) composites helps to minimize intra-individual variability over the course 
of the day. If spot samples are used, the ICC should be included in the calculation of 
population variability. Hydration status should be considered by conducting the analysis 
based on both the biomarker concentration as well as based on the basis of mass excretion 
rate (ng/hr and ng/kg-hr). In considering the reverse dosimetry results as part of 
evaluating source contributions, it is important to have a clear hypothesis regarding the 
relationship between exposure pathway and exposure metric. 

Reverse dosimetry can be conducted on urinary concentrations using a simple mass 
balance approach. This approach assumes that steady state has been reached. Steady state 
(or, more likely, periodicity, meaning that the concentration varies around a constant 
value) is a reasonable assumption in situations where there is a recurring pattern of 
exposure, particularly if 24-hour composite samples are used. For example, many dietary 
exposures and consumer items follow a similar daily pattern of exposure. However, steady 
state may not apply for products that are used very intermittently. In such situations, 
sampling from large population samples that would capture the intermittent nature of the 
exposure scenario would be important in accurately describing the population variability 
in exposure. In such cases, it would be important to ensure that any populations more 
likely to use the product of interest are adequately sampled. 

Human toxicokinetic parameters are strongly preferred. Ideally these parameters would 
come from the same population(s) used as the basis of the anatomy and physiology data, 
but national-level anatomy and physiology data (particularly by age/sex grouping) are 
often used. Animal data can be used for the Fue, with rats preferred over mice, but care is 
needed to ensure that animal and human toxicokinetics are sufficiently similar for the 
animal data to be a reasonable surrogate. There are currently no established methods for 
using in vitro or in silico toxicokinetic data to interpret urinary biomonitoring data.  

The biomonitoring data may come from national-level data through small cohorts. Small 
cohorts have the advantage that it is possible to use an intense sampling design, as 
described in Section 2.5. Detailed activity questionnaires can be used for both small cohorts 



and large cohorts up to about 100 to a few hundred individuals, helping to refine potential 
sources. National-level biomonitoring data are readily available without conducting 
additional studies, but do not include information about activities and potential sources of 
exposure. In addition, care is needed in evaluating spot sample data and distinguishing 
intra-individual from inter-individual variability.  

5.2 Blood as a Biomatrix 
Application of reverse dosimetry to blood concentrations generally requires knowledge of 
the chemical’s volume of distribution and half-life (or the related parameters of clearance 
rate k or clearance=Vd*k) and fractional bioavailability. Blood is the preferred matrix for 
chemicals with long half-lives, and for lipophilic chemicals, which also generally have long 
half-lives. Although there is not a clear definition of long half-life in this context, a half-life 
of 36 hours or more is a reasonable cut-off, since the key issue is the elimination rate 
relative to the exposure frequency. This definition is fit for purpose, even though it is much 
shorter than common categorizations of short vs. long half-life. 
 
Reverse dosimetry analyses with blood can be conducted using any size cohort. As for 
analyses with urine, the approaches presented here assume steady state. Achieving steady 
state is less of a concern for biomonitoring in blood than for biomonitoring in urine, mostly 
because the blood is the preferred matrix for chemicals with longer half-lives, and so the 
chemical is more likely to have reached steady state, and be less susceptible to short-term 
fluctuations in exposure. However, the internal dose for chemicals with extremely long 
half-lives (>1000 days) may still be in the accumulation phase, and so such chemicals may 
not have reached steady state, depending on the duration of exposure.  
 
As for interpreting urine biomonitoring data, human toxicokinetic data are preferred, but 
animal data may be used, particularly if other (e.g., in vitro) data support the conclusion 
that humans are similar to animals. PBPK models are often used to interpret blood 
biomonitoring data, where human parameters can be scaled from the animal values and/or 
estimated as part of the parameter fitting process.  
 
Although no case studies were found illustrating the use of in vitro toxicokinetic 
parameters for reverse dosimetry, first principles indicate that such data can be used for 
interpreting blood biomonitoring data. As described in Section 3.3.4, this can be done using 
a compartmental model and data on the intrinsic liver clearance and fraction unbound of 
the parent chemical. This approach has the advantage of using kinetic parameters obtained 
in human cells in a high-throughput approach, making it possible to evaluate data for many 
chemicals for which no in vivo kinetic data are available. Theoretically it would be possible 
to address contributions to population variability with such an approach. However, future 
methods development is needed to measure in vitro the variability in factors affecting 
estimated in vivo dose related to age, sex, or other population characteristics. As discussed 
in Section 3.3.4, there are also a number of caveats to this approach and the simplifying 
assumptions involved.  
 



5.3 Lipids as a Biomatrix 
Like blood, lipids can be used as a biomatrix for chemicals with long half-lives. However, 
due to the highly invasive nature of the sampling, lipids would be used as a biomatrix only 
in evaluating fat from cadavers or surgical specimens. The reverse dosimetry approach for 
lipids is similar to that used for evaluating biomarkers in blood. No case studies were 
located that applied reverse dosimetry to estimate exposure based on levels of biomarkers 
in human lipids. 
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Appendix A – Case Studies 
 
A1.0 Aylward et al., 2017 - Bisphenol A (BPA) and Triclosan; Urinary Spot 
Sampling of Rapidly Eliminated Chemicals 
 
A1.1 Overview 
As part of evaluation of the impact of intra-individual variability on spot sample results 
such as those collected in NHANES, Aylward et al. (2017) evaluated biomarker data and the 
implications for exposure assessment and reverse dosimetry using intensive data sets. The 
data sets included spot samples, 24-hour samples, and longer-term urine collection. Two 
case studies are presented here. The first is for BPA, a chemical for which the primary route 
of exposure is in food, and for which there is relatively little inter-individual variability. The 
second is for triclosan, for which the primary exposure occurs in personal care products. 
Because personal care products dominate exposure, there is both substantial inter-
individual variability (depending on whether products containing triclosan are used) and 
potentially intra-individual variability in daily exposure (if the use of personal care 
products varies from day to day). Both BPA and triclosan have short half-lives, consistent 
with sampling of urine and the goal of the analysis of improving the interpretation of 
urinary biomarker data. 
 
A1.2 Identify the necessary data 
Biomonitoring Data 
Two intensive sampling data sets were used for the BPA analysis, and one for the triclosan 
analysis. Each data set included information from eight subjects (four male and four 
female), from whom every urine void was collected for several days. Data for triclosan 
were from a study funded by the European Chemical Industry Council (CEFIC). Data for 
BPA were from the CEFIC study and one conducted by the US Centers for Disease Control 
and Prevention (CDC).  The age ranges were 25-58 and 31-66 years for the CDC and CEFIC 
datasets, respectively. Urine samples were collected for 7 days for the CDC data set, and for 
6 days for the CEFIC data. However, the subjects in the CEFIC study were instructed to 
abstain for 2 days (in the middle of the 6-day collection period) from certain personal care 
products that contain triclosan, and those days were excluded from the analysis, resulting 
in 4 days of spot samples for the analyses described by Aylward et al. (2017). For both 
chemicals, the biomarker of interest was the parent compound.  
 
Chemical-Specific Toxicokinetic Data 
Aylward et al. (2017) identified the following parameters for BPA and triclosan. The 
excretion half-life of BPA is 4-6 hours and the FUE of BPA is 1 (Volkel et al., 2008). The half-
life for triclosan is approximately 10 hours and the FUE is 0.54 (Sandborgh-Englund et al., 
2006).  
 
Anatomy and Physiology Data 
In order to estimate the daily intake in µg/day using the urinary mass balance approach 
(Section 3.3.2), the only additional parameter needed is the 24-hour urinary volume. The 



authors used a volume of 1.7 liters/day (van Haarst et al., 2004). For analyses of the 
creatinine-adjusted concentration, the authors used a central tendency creatinine excretion 
rate for adults of 1.3 g/day (Mage et al., 2008). Aylward et al. (2017) also noted that the 
creatinine excretion rate can be calculated on an individual basis as a function of gender, 
height, weight and age (Mage et al., 2008).  
 
A1.3 Conduct Reverse Dosimetry  
Daily intake was estimated using Equation 1 (Section 3.3.2 of the main text), with a few 
modifications. Daily intake was estimated on a mass basis, rather than per unit body 
weight, and so there was no normalization by body weight. Because the purpose of the 
study was to inform the interpretation of distributions of spot sample data in large data 
sets, the concentration term was the 95th percentile urine concentration. Similarly, the 
creatinine-adjusted excretion rate was used with Equation 2 to estimate daily intake.   
These calculations are illustrated with the supplemental EXCEL® spreadsheet. The 
calculations shown are based on the geometric mean spot sample data from Table 4 of 
Aylward et al. (2017), and using the parameters used in that study. The spreadsheet shows 
the calculation of daily intake based on either mg/day or body weight adjusted (mg/kg-
day). However, Aylward et al. (2017) did not present the intake corresponding to the 
measured urinary concentrations.   
 
It is noted that a key focus of the Aylward et al. (2017) study was on the implications of 
variability in spot sample data. These results and their implications were discussed in the 
main text (Section 3.8).  
 
A2.0 Egeghy and Lorber, 2011 – Perfluorooctane sulfonate (PFOS); 
Blood/Serum Sampling of Persistent, Lipid-Soluble Chemicals 
 
A2.1 Overview 
PFOS is a persistent, relatively non-volatile chemical that is found in many consumer 
products and the environment. People can be exposed to PFOS released from consumer 
products, including non-stick cookware, electronics, and oil and stain-protective coatings in 
carpets, food containers, and clothes. Humans are commonly exposed to PFOS through the 
environment. Industrial releases can lead to PFOS contamination of the air and water. 
People may also be exposed from the use of PFOS in fire-fighting foam (Egeghy and Lorber, 
2011). Egeghy and Lorber (2011) used data from several biomonitoring studies of PFOS in 
blood to estimate intake, and compared the results with intake estimated based on the 
concentrations in several environmental media.  
 
A2.2 Identify the necessary data 
Biomonitoring Data 
Blood biomonitoring data were extracted from several different studies (Calafat et al., 
2007; Olsen et al., 2003a, b; Olsen et al., 2005; Hansen et al., 2001; Calafat et al., 2006; Olsen 
et al., 2004; Olsen et al., 2007b; Kannan et al., 2004; Apelberg et al., 2007). Table A2-1 
summarizes key characteristics of the respective studies. As shown, the studies ranged 



from national studies to regional cohorts to small cohorts. Most evaluated serum, but two 
evaluated plasma for part of the cohort, and one evaluated cord blood. One study evaluated 
pooled serum, and two evaluated both plasma and serum. 
 
Table A2-1. Summary of Studies Measuring General Population Blood Concentrations 
of PFOS 

Citation Total n 
Evaluated 

Blood Fraction 
Evaluated 

Other comments 

Calafat et al., 2007 2094 Serum NHANES 2003/2004 
Calafat et al., 2007 1562 Serum NHANES 1999/2000 
Olsen et al., 2003a, b 645 Serum Red Cross 
Olsen et al., 2005 356 Serum 1974; Plasma 

1989 
178 each from 1974 
and 1989 

Hansen et al., 2001 24 Serum -- 
Calafat et al., 2006 23 Pooled serum -- 
Olsen et al., 2004 238 Serum Elderly people from 

Seattle, WA 
Olsen et al., 2007b 40,  

100 
Plasma for 2005 
Serum for 2000 

-- 

Kannan et al., 2004 75, 30, 70 Serum 3 locations in the US 
Apelberg et al., 2007 299 Cord blood Baltimore, MD 
Calafat et al., 2007 2094 Serum NHANES 2003/2004 

 
Chemical-Specific Toxicokinetic Data 
Egeghy and Lorber (2011) estimated the first-order elimination rate kP as 0.00039/day, 
based on the median half-life of about 4.8 years reported by Olsen et al. (2007a) from 
occupational data. Due to the lack of human data, the volume of distribution (Vd) was 
estimated using data from monkey studies. Egeghy and Lorber (2011) bounded the 
estimates of volume of distribution with a low estimate of 200 mL/kg (Andersen et al., 
2006) and a high estimate of 3000 mL/kg (extrapolated from Griffith and Long, 1980; 
Noker and Gorman 2003).  
 
Anatomy and Physiology Data 
No anatomy and physiology data are necessary to calculate the daily intake dose using this 
method.  
 
A2.3 Conduct Reverse Dosimetry  
Daily intake was estimated using Equation 7 (Section 3.3.4 of the main text), and assuming 
steady state. The authors noted that it can be reasonable to assume that steady state has 
been reached for adults who have been exposed at background levels for a “reasonably 
long” period of time. 
 
The supplemental EXCEL® spreadsheet illustrates the calculation of the average daily 
intake of PFOS, based on the geometric mean of PFOS in serum in the NHANES 2003-2004 
data of 20.7 ng/mL. The calculation is shown for the bounding estimates of the volume of 



distribution, and agrees with the range of intakes estimated by the authors. The intake 
calculated based on body burden biomarker levels was compared with the intake 
estimated by measuring the concentration of PFOS and precursors in various 
environmental media, and calculating intake using standard equations.  
 
A3.0 Wetmore et al., 2015 – Chlorpyrifos (Case Study 3A)/Acetaminophen 
(Case Study 3B); Use of In Vitro Toxicokinetic Parameters to Estimate Daily 
Intake 
 
A3.1 Overview 
As part of an effort to expand the use of in vitro toxicology data, including data developed in 
high throughput cell culture assays such as ToxCast, high throughput toxicokinetic (httk) 
data and methods have been developed to aid in in vitro to in vivo extrapolation (IVIVE) 
(Wambaugh et al., 2015; Wetmore 2015; Wetmore et al., 2012, 2013, 2015; Ring et al., 
2017). The reverse dosimetry approaches used for IVIVE can also be used to interpret data 
from biomonitoring in blood, since the in vitro chemical concentration is considered to be 
analogous to the concentration of the chemical in blood. Most of the available publications 
on these methods focus on presenting the overall calculation methods and high-level 
summaries across multiple chemicals. However, Wetmore et al. (2013, 2015) presented 
calculations for several individual chemicals and provided the underlying in vitro 
toxicokinetic data. The case studies presented here were based on the data on chlorpyrifos 
and acetaminophen presented in Wetmore et al. (2015). Unfortunately, that paper did not 
provide results for chemicals that are more relevant to consumer exposure. It is also noted 
that Pearce et al., (2017) have developed the httk R package to support calculations 
(including population distributions) using the httk data. (See also Breen et al., 2021.) 
Instead of using EXCEL® to try to replicate previous calculations, it is highly recommended 
to do the calculations in R, using the calc_analytic_css function in the httk package. This 
approach minimizes the potential for error and ensures that the most recent available 
toxicokinetic parameters are used. Those parameters (current as of the completion of this 
guide) are provided in the chemphysicaldata tab of the supplemental EXCEL® file with this 
guide. Note that previous versions of httk included a calc_oral_equiv function, but this 
function is no longer included. The function calc_mc_oral_equiv uses a Monte Carlo 
simulation and is also not recommended for this application. Instead, using 
calc_analytic_css allows the calculation of a Css which can then be used to calculate an oral 
equivalent dose, as described in A3.3.  Since use of the R code is recommended, the 
supplemental EXCEL® file does not include a tab for the case studies here. However, this 
text does describe the steps in the process, for illustrative purposes.  
 
A3.2 Identify the necessary data 
 
Biomonitoring Data 
As noted, the Wetmore et al. (2015) study is not a classic biomonitoring study. Instead, it 
describes the calculation of an internal dose corresponding to an in vitro concentration. 
The context of the analysis is interpreting ToxCast data using in vitro to in vivo 
extrapolation (IVIVE), but the same methods can be applied to calculate the daily intake 



that corresponds to a specified concentration of a chemical in the blood. Because this case 
study is illustrative, with a focus on the equations used, no actual biomonitoring data were 
used in the case study. Instead, a blood concentration of 10 µM can be used for 
convenience. Based on the chlorpyrifos molecular weight of 350.6 g/mol, 10 µM 
corresponds to a blood concentration of 3.51 mg/L. For acetaminophen, the molecular 
weight of 151.2 g/mol means that 10 µM corresponds to a blood concentration of 
1.51mg/L.  
 
Chemical-Specific Data 
The blood concentration is used to estimate daily intake using the multi-compartmental 
model approach described in Section 3.3.5, and assuming steady state. In this approach, 
two chemical-specific parameters are needed and are measured using high-throughput 
techniques. These parameters are the fraction of chemical unbound in plasma and the 
intrinsic clearance rate of the chemical of interest in human hepatocyte culture. Values 
from httk can be obtained from the chemphysicaldata tab of the supplemental EXCEL® file 
with this guide. The fraction unbound in plasma is shown in column AI 
(Human.Funbound.plasma), and the in vitro intrinsic clearance is shown in column AC 
(Human.Clint).6 Where multiple values are provided for a given parameter, these values 
reflect the median, and upper and lower credible bound, in that order.  
 

Several manipulations are required to convert the two high-throughput toxicokinetic 
parameters into toxicokinetic data useable in the reverse dosimetry calculation. The 
toxicokinetic data required for the reverse dosimetry approach are the whole-liver 
intrinsic clearance rate and the unbound fraction of parent compound in the blood. This 
latter parameter reflects the free (unbound) compound that can be metabolized. A third 
chemical-specific parameter (the blood to plasma concentration ratio) is calculated from 
the fraction unbound in plasma. 
 
The fraction unbound in plasma is determined by measuring the chemical concentration in 
phosphate-buffered saline (PBS) and dividing that value by the mean concentration in a 
matched plasma sample. The fraction in plasma can be used to calculate the fraction 
unbound in blood (Ring et al., 2017): 
  

𝐹𝐹𝑢𝑢𝑢𝑢 = 𝐹𝐹𝑢𝑢𝑢𝑢
𝑅𝑅𝑏𝑏2𝑝𝑝

   Eq. A30 

 
Where: Fup= Fraction of chemical unbound in plasma (unitless) 

                                                        
6 Note that values obtained from the httk package differ in some cases from those obtained from Wetmore et 
al. (2015) supplemental table 3. The fraction unbound in plasma can be found in supplemental table 3A of 
Wetmore et al. (2015), column E (Mean % Unbound), and converted from a % to a fraction. Intrinsic 
clearance rate in human hepatocyte culture can be found in supplemental table 3B of Wetmore et al. (2015), 
column AK (Adjusted Clearance). These differences reflect the ongoing improvements in the IVIVE program 
and insights on appropriate scaling methods (personal communication with EPA). As noted in Section 3.3.5, 
methods for estimating the in vitro metabolic parameters have improved with time, resulting in some 
modifications to the parameters, particularly for highly-bound chemicals; the most recent data are reflected 
in the httk package.  



 Fub= Fraction of chemical unbound in blood (unitless) 
               Rb2p= Constant ratio of blood to plasma concentration (see equation below) 
 
Rb2p may be derived using Schmitt’s Method (Schmitt, 2008 as cited in Ring et al., 2017):  
 

𝑅𝑅𝑏𝑏2𝑝𝑝 = 1 − 𝐻𝐻𝐻𝐻𝐻𝐻 + 𝐻𝐻𝐻𝐻𝐻𝐻 ∗ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅2𝑝𝑝 ∗ 𝐹𝐹𝑢𝑢𝑢𝑢   Eq. A31 

Where: Hct= Hematocrit (% red blood cells in blood) 
               KRBC2p= Partition coefficient between red blood cells and plasma 
 
Calculation of the partition coefficient between red blood cells and plasma (KRBC2p) involves 
several different parameters and partition coefficients in addition the Fup. For the case 
studies shown here, KRBC2p was obtained from the httk R package, as noted in the 
accompanying Case Study spreadsheet.  
 
Additional calculations are needed to calculate the whole liver intrinsic clearance rate from 
the in vitro data. The whole liver intrinsic clearance rate is based on the intrinsic clearance 
rate measured from human hepatocytes in vitro, the hepatocellularity in millions of cells, 
and liver mass:  
𝐶𝐶𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖,ℎ = 𝐶𝐶𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 ∗ ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗

𝐿𝐿
106 µ𝐿𝐿

∗ 60 𝑚𝑚𝑚𝑚𝑚𝑚
ℎ𝑟𝑟

    Eq. A32 

Where: CLint,h = Whole liver intrinsic clearance (L/hr) 
CLint= Intrinsic clearance rate measured from in vitro human hepatocytes (µL/min – 

million cells) 
 Hepatocellularity= millions of cells/kg of liver tissue 
               Mliver= Liver mass (kg) 
  
Two different data sets have been used for hypocellularity and liver mass7. The parameters 
provided by Wetmore et al. (2015) are used in the primary calculations on the 
accompanying case study spreadsheet.  
 
Anatomy and Physiology Data 
The only anatomy and physiology data required for this approach are the liver blood flow, 
the glomerular filtration rate (GFR), and hematocrit. The mean glomerular filtration rate of 
6.7 L/hour is based on the data of Rule et al. (2004). The mean liver blood flow is 90 
L/hour, based on the results of Davies and Morris (1993). The httk package uses a default 
hematocrit value of 0.448.  

                                                        
7 Both Wetmore (2015) and Wetmore et al. (2015) obtained the hepatocellularity from Barter et al. (2007), 
but they reported different values. Wetmore (2015) used a value of 137 x 106 hepatocytes/g liver, while 
Wetmore et al. (2015) used 110 x 106 hepatocytles/g liver. The reason for this difference is not clear. 
Similarly, Wetmore (2015) and Wetmore et al. (2015) reported different values for the liver mass or volume, 
based on Johnson et al. (2005), with no explanation for the difference. Wetmore (2015) used 1820 g, while 
Wetmore et al. (2015) used 1596 g. Here, the specific gravity of the liver is assumed to be 1, as is common in 
pharmacokinetic modeling. The product of hepatocellularity and liver weight (i.e., the number of 
hepatocytes/liver) differs by about 40% for the two approaches. 
8 More recent analyses, such as Breen et al. (2021), use physiological parameters scaled to body weight. 



 
A3.3 Conduct Reverse Dosimetry 
The reverse dosimetry calculations were conducted as described in Section 3.3.5, using 
Equations 13 and 14 in the main text. Equation 13 presents the steady state concentration 
of the chemical in blood as a function of the dose rate, GFR, fraction of the parent 
compound unbound in the blood, liver blood flow rate, and whole liver intrinsic clearance. 
Note that, although the parameter of interest is the dose rate, Equation 13 describes the 
steady state concentration in blood, because this equation follows a logical progression. 
The equation can be rearranged to express daily intake (converting the dose rate from dose 
per hour to dose per day) as a function of the steady state blood concentration, standard 
physiological parameters, and chemical-specific parameters determined in vitro. 
Due to the complexity of the calculations and number of parameters, the relevant equations 
are repeated here from the main text. 
 

𝐶𝐶𝑆𝑆𝑆𝑆 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(𝐺𝐺𝐺𝐺𝐺𝐺∗𝐹𝐹𝑢𝑢𝑢𝑢)+(
𝑄𝑄𝑙𝑙∗𝐹𝐹𝑢𝑢𝑢𝑢∗𝐶𝐶𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖,ℎ
𝑄𝑄𝑙𝑙+𝐹𝐹𝑢𝑢𝑢𝑢∗𝐶𝐶𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖,ℎ

)
    Eq. A33 

Where: kdose= Dose rate (mg/kg-hour) 
               CSS= Blood Concentration in steady state (mg/L) 
               GFR= Glomerular Filtration Rate (L/hour-kg) 
               Fub= Unbound fraction of parent compound in the blood (unitless) 
               Ql= Liver blood flow (L/hour-kg) 
 CLint,h= Whole-liver intrinsic clearance rate (L/hour-kg) 
 
Whole liver intrinsic clearance and fraction unbound in blood are calculated as described in 
Appendix Section 3.2. 
 
Estimating daily intake 
As discussed in Section 3.3.5 of the main text,  Eq. 13 (here Eq. A4) can be applied to 
determine the steady state concentration for a daily intake of 1 mg/kg-day (kdose = 0.042 
mg/kg-hr). The result can then be used as a conversion factor for the measured biomarker 
concentration (Eq. 14 in the main text, here Eq. A5). This approach has the advantage of 
being mathematically more intuitive than rearranging Eq. A4 to solve for dose, and is the 
approach used by the U.S. EPA for IVIVE:  
 

𝐷𝐷𝐷𝐷 =
𝐶𝐶 𝑥𝑥 1𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘−𝑑𝑑𝑑𝑑𝑑𝑑

𝐶𝐶𝑠𝑠𝑠𝑠
   Eq. A34 

 
Where: DI = Daily intake (mg/kg-day) 
    C = Measured biomarker concentration in blood (mg biomarker/L) 
   Css = Steady state concentration of biomarker in blood at a dose of 1 mg/kg-day, 
calculated using Eq. 13 (mg/L) 
 
 



A4.0 Pleil and Sobus (2013), Use of the ICC  
 
This is not a full case study, but rather explains how the ICC can be used in interpreting 
biomonitoring data. The ICC is a measure of how much of the total variability in a sampling 
of population-based biomonitoring data is due to intra-individual variability (discussed in 
Section 3.8.2 of the main text). The application is shown in the Case Study 4 tabs of the 
accompanying spreadsheet.  
 
In this example, the user enters the spot sample geometric mean (GM) and geometric 
standard deviation (GSD) for the biomonitoring data of interest, such as data from 
NHANES. The spreadsheet automatically calculates the distribution of long-term average 
exposures for the population for the bounds of ICC = 0 (all the variability is due to intra-
individual variability) and ICC = 1 (all variability is due to inter-individual variability).  
Additional user-specified ICC values and number of samples per individual (m) can be 
entered, based on ICC data obtained in smaller, dedicated studies (rows 13 and 14). Based 
on the ICC, the spreadsheet calculates a modified GSD for the population (row 8 of the 
spreadsheet). This modified GSD reflects the actual population distribution. Thus, when ICC 
= 1, and all variability is due to inter-individual variability, the modified GSD is the same as 
the original GSD. When ICC = 0, all variability is due to intra-individual variability, and the 
modified GSD is smaller than the original GSD. Other values of ICC < 1 result in 
intermediate values of the modified GSD. The modified GSD can then be used together with 
the GM to calculate the 95th percentile. 
 
The new GSD can now be used to estimate the 95th percentile of the population exposure: 
 

95𝑡𝑡ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝐺𝐺𝐺𝐺 +  1.64𝐺𝐺𝐺𝐺𝐺𝐺   Eq. 35 

 
The 95th percentile concentrations calculated for the three combinations of ICC and m in 
the case study are shown in Row 9 of the spreadsheet.  
 
The spreadsheet was initially designed for determining the percentage of people who 
would potentially exceed the BE for a given distribution. Because the focus of this guide is 
on reverse dosimetry, the BE line has been removed. However, the box for entering the 
user-specified BE has not been removed, because removing the range would remove all of 
the curves. 
  



Appendix B – Supplemental Tables 
 
This Appendix provides two types of data summaries. Table B1 provides additional information 
on sources of A&P data, and illustrative reverse dosimetry analyses that used various types of 
A&P data from various sources. Table B1 is intended to supplement the information provided in 
Table 1 of the main document.  

Table B1 is organized according to the four main sources of A&P data discussed in the main 
document. The data may have been obtained from the same study in which the biomonitoring 
was conducted (“same study”). The data may come from a study specifically designed to 
characterize the parameter in the population (“dedicated study”). A regression equation may 
have been developed to describe how the parameter varies with other population characteristics, 
either as part of a dedicated study, or in a publication reviewing multiple data sets (“regression 
equation”). Finally, the parameter may be based on compilations or default values that are 
published as guidance documents (“compilation”). The values in the compilation may 
themselves have been obtained from dedicated studies or regression equations, but for ease of 
reference, are noted here simply as the compilations. All of the approaches noted here are 
legitimate and scientifically valid approaches for obtaining A&P data.  

Tables B2 and B3 summarize the types of biomonitoring data and toxicokinetic data, the reverse 
dosimetry approach used with different data types, and types of situations where the data types 
can be used appropriately. Of necessity, only brief conclusions can be presented in this format, 
and the reader is encouraged to review these tables in conjunction with the more nuanced 
conclusions and recommendations in Section 5.0 of the main document.  



Table B1. Sources of Anatomy and Physiology Data by Data Type – Illustrative Studies 

Type of A&P 
Data 

Same Study Compilation Dedicated Study  Regression Equation 

Body Weight Apel et al., 2020; Cok et al., 2020; 
Koch et al., 2011; Lakind et al., 
2011; Lu et al., 2014; Wittassek et 
al., 2007 

Institute of Medicine, 1998, 
as cited in Katsikantami et al. 
2019 

-- -- 

Body Lipid Mass Tay et al., 20199 US EPA (2020b) (assumed 
proportions without 
reference) 

-- Tay et al., 2019 

Creatinine 
Excretion 

-- Tietz et al., 2006, as cited in 
Qian et al., 2015 

Remer et al. 2002, as cited in 
Qian et al., 2015, Koch et al., 
2007, 2011 

Cockcroft and Gault, 1976, 
as cited in Mage et al., 
2008; Mage et al., 2008, as 
cited in Aylward et al., 
2017, Reyes and Price, 
2018, and others; Kawasaki 
et al, 1991, as cited in Fong 
et al., 2014 

Glomerular  
Filtration Rate 
(GFR) 

  Rule et al., 2004, as cited in 
Wetmore et al., 2012 

Levey et al., 2009 

Urinary Volume Apel et al., 2020; von Goetz et al., 
2010; Moos et al., 2017; Wittassek 
et al., 2007 

Institute of Medicine, 1998, 
as cited in Katsikantami et al. 
2019; US EPA, 2011, as cited 
in Cao et al., 2016; ICRP, 
2002, as cited in Cok et al., 
2020, Connolly et al., 2020, 

Van Haarst et al., 2004, as cited 
in Aylward et al., 2017; Miller 
and Stapleton, 1989, as cited in 
Fromme et al., 2014, 2016 

-- 

                                                        
9 Calculated based on individual BMI, age and sex, based on a regression equation 



Type of A&P 
Data 

Same Study Compilation Dedicated Study  Regression Equation 

Lakind et al., 2011; Lu et al., 
2014 (default); Health 
Canada, 2020 (pregnant 
women, adult women, 
toddlers) 

 

  



Table B2. Summary of Method Application and Quality Based on Type of Biomonitoring Data 

Type of 
Biomonitoring 
Data  

General 
Approach 
Used 

Valid, 
sound 
equation? 

Used in peer 
reviewed 
literature? 
(at least 
once) 

Used in 
Grey 
Literature? 
(at least 
once) 

Reliable 
for 
Chemical 
Scenario? 
(Short 
Half-Life)  

Reliable for 
Chemical 
Scenario? 
(Long 
Half-Life)  

Example of Best Practices 
Publication/Comments  

Urine Spot 
Samples (with 
or without 
creatinine 
adjustment) 

Urinary Mass 
Balance 
Approach  
 

x x x If 
elimination 
half-time is 
short 
relative to 
exposure 
frequency, 
bounding 
should be 
done using 
ICC to 
address 
variability.  

Yes, but low 
Fue can lead 
to high 
variability 
and high 
uncertainty 

Koch et al., 2007; Aylward et 
al., 2012. A short elimination 
half-life relative to exposure 
interval can lead to over-
estimation of the variability 
in the population 
distribution; correction for 
the relative contribution of 
intra- and inter-individual 
variability via the ICC is 
needed. Assumes steady 
state or periodicity, which is 
reasonable if product has a 
consistent daily pattern of 
use.  

24-hour Urine 
Composites  

Urinary Mass 
Balance 
Approach 

x x x Yes  Yes, but low 
Fue can lead 
to high 
variability 
and high 
uncertainty 

Wittassek et al., 2007. This 
approach is preferred over 
spot samples, because it 
captures the entire daily 
excretion, and so 
intraindividual variability has 
less impact for short half-life 
chemicals. Assumes steady 
state. May need to 
extrapolate to longer 



Type of 
Biomonitoring 
Data  

General 
Approach 
Used 

Valid, 
sound 
equation? 

Used in peer 
reviewed 
literature? 
(at least 
once) 

Used in 
Grey 
Literature? 
(at least 
once) 

Reliable 
for 
Chemical 
Scenario? 
(Short 
Half-Life)  

Reliable for 
Chemical 
Scenario? 
(Long 
Half-Life)  

Example of Best Practices 
Publication/Comments  

durations to capture entire 
excretion (Poet et al., 2016) 

Whole Blood, 
serum or 
plasma 

Reverse 
Compartmental 
Model 

x x -- If 
elimination 
half-time is 
short 
relative to 
exposure 
frequency, 
bounding 
should be 
done using 
ICC to 
address 
variability.  

Yes  Fromme et al., 2007; Egeghy 
and Lorber, 2011; Tay et al., 
2019. Assumes steady state; 
long half-life chemicals have 
less variability across time. 
Calculation for serum 
includes consideration of 
body lipid mass. 

Multi-
Compartmental 
Model 

x -- -- If 
elimination 
half-time is 
short 
relative to 
exposure 
frequency, 
bounding 
should be 
done using 
ICC to 
address 
variability. 

High 
uncertainty 
common 

Theoretically possible 
application of IVIVE methods, 
but no published examples 
located. High uncertainty 
raises issues – see main text 
for details. 



Type of 
Biomonitoring 
Data  

General 
Approach 
Used 

Valid, 
sound 
equation? 

Used in peer 
reviewed 
literature? 
(at least 
once) 

Used in 
Grey 
Literature? 
(at least 
once) 

Reliable 
for 
Chemical 
Scenario? 
(Short 
Half-Life)  

Reliable for 
Chemical 
Scenario? 
(Long 
Half-Life)  

Example of Best Practices 
Publication/Comments  

Exposure 
Conversion 
Factors 

x x x If 
elimination 
half-time is 
short 
relative to 
exposure 
frequency, 
bounding 
should be 
done using 
ICC to 
address 
variability. 

Yes  Clewell et al., 2008. Used in 
combination with PBPK 
modeling. 

Breast Milk 
Samples 

Reverse 
Compartmental 
Model 
Approach 
(Lipids) 

x x x No  Yes  US EPA, 2020b (HBCD), based 
on Aylward and Hays, 2011.  
Intake expressed as function 
of mass HBCD/mass lipid in 
the body10. 

Adipose Tissue Reverse 
Compartmental 
Model 
Approach 
(Lipids) 

x x x No  Yes  US EPA, 2020b (HBCD), based 
on Aylward and Hays, 2011.  
Intake expressed as function 
of mass HBCD/mass lipid in 
the body. 

                                                        
10 The same approach was used for adipose tissue, blood, serum, and breast milk, after normalizing to concentration in terms of ng/g lipid, assuming 
lipid content in whole blood and serum is 25%, lipid content in hair is 6%, and density of serum is 1.024 g/mL. Use of feces and fetal tissue is also noted, 
without explanation of how lipid normalization was done. 



Type of 
Biomonitoring 
Data  

General 
Approach 
Used 

Valid, 
sound 
equation? 

Used in peer 
reviewed 
literature? 
(at least 
once) 

Used in 
Grey 
Literature? 
(at least 
once) 

Reliable 
for 
Chemical 
Scenario? 
(Short 
Half-Life)  

Reliable for 
Chemical 
Scenario? 
(Long 
Half-Life)  

Example of Best Practices 
Publication/Comments  

Hair Reverse 
Compartmental 
Model 
Approach 
(Lipids) 

x x X No Not broadly 
validated 

US EPA, 2020b (HBCD)- Used 
a lipid model to estimate 
daily intake in hair. Assumes 
that lipid content in hair is 
6% 

 

 

  



Table B3. Summary of Method Application and Quality Based on Type of Toxicokinetic Data 

Type of 
Toxicokinetic 
Data  

Types of TK 
Data 

General 
Approach 
Used 

Valid, 
sound 
equation? 

Used in 
peer 
reviewed 
literature? 
(at least 
once) 

Used in 
Grey 
Literature? 

Reliable 
for 
chemical 
scenario? 
Short half-
life.  

Reliable 
for 
chemical 
scenario? 
Long half-
life.  

Example of Best Practices 
Publication/Comments  

Urinary 
excretion 
fraction (Fue) 

Human Urinary 
Mass 
Balance 
Approach 

x x x Yes  Yes, but low 
Fue can lead 
to high 
variability 
and high 
uncertainty 

Koch et al, 2007. This is the 
most common approach for 
reverse dosimetry based on 
urine data.  

Animal Urinary 
Mass 
Balance 
Approach 

x x x Yes  Yes, but low 
Fue can lead 
to high 
variability 
and high 
uncertainty 

Health Canada, 2020; Zhang et 
al., 2020. The animal Fue can 
be used if human data are not 
available.  

In Vitro -- -- -- -- -- -- -- 
Modeled -- -- -- -- -- -- -- 

Half-life Human Compartme
ntal model 
approach 

x x x Maybe  Yes Fromme et al., 2007, US EPA, 
2020b 

Animal Compartme
ntal model 
approach 

-- -- -- -- Yes Tay et al., 2019. Greater 
uncertainty than use of human 
half-life 

In Vitro -- -- -- -- -- -- -- 
Modeled -- -- -- -- -- -- -- 

Volume of 
Distribution 

Human -- -- -- -- -- Yes Theoretically valid if 
appropriate data available, but 
no examples located. 



Type of 
Toxicokinetic 
Data  

Types of TK 
Data 

General 
Approach 
Used 

Valid, 
sound 
equation? 

Used in 
peer 
reviewed 
literature? 
(at least 
once) 

Used in 
Grey 
Literature? 

Reliable 
for 
chemical 
scenario? 
Short half-
life.  

Reliable 
for 
chemical 
scenario? 
Long half-
life.  

Example of Best Practices 
Publication/Comments  

Animal Compartme
ntal model 
approach 

x x -- Not 
applicable 

Yes Fromme et al., 2007; Egeghy 
and Lorber, 2011. Not used for 
short half-life chemicals 
because blood monitoring and 
compartmental model not used 
for these chemicals. 

In Vitro -- -- -- -- -- -- -- 
Modeled -- -- -- -- -- -- -- 

In vitro – 
intrinsic 
clearance and 
fraction 
unbound in 
plasma  

Human -- -- -- -- -- -- -- 
Animal -- -- -- -- -- -- -- 
In Vitro -- -- -- -- -- -- -- 
Modeled Multi-

Compartme
ntal Model 
Approach 

x -- -- No High 
uncertainty 
common 

Theoretically possible 
application of IVIVE methods, 
but no published examples 
located. High uncertainty raises 
issues – see main text for 
details. 

 

 

  



Appendix C – Search Strategy 
 
A multipronged search strategy was used to both identify relevant information on relevant 
methods and to identify examples of the use of reverse dosimetry for case studies. This 
multipronged approach included direct searching of authoritative websites, “tree 
searching” (also known as forward and backward searching) from a limited set of key 
references, and review of references identified in interviews with experts. Each of these 
approaches is discussed in more detail below. Note that an iterative process was used. That 
is, articles identified from searching bibliographic databases such as PubMed or from other 
searches were themselves used as the basis for forward and backward searches. 
 
Authoritative Website Search 
To find relevant articles and information for the guidance document, an authoritative 
website search was conducted between October and December 2020. To do this, multiple 
agency websites were searched for information on the use of biomonitoring data in 
exposure assessments. These agency sites include: 

• Association of Public Health Laboratories 
(https://www.aphl.org/programs/environmental_health/nbn/Pages/default.aspx
)  

• California Environmental Contaminant Biomonitoring Program 
(https://biomonitoring.ca.gov/)  

• CDC (https://www.cdc.gov/biomonitoring/index.html)  
• European Chemicals Agency (https://echa.europa.eu/)  
• European Environmental Agency (https://www.eea.europa.eu/)  
• German Environmental Survey 

(https://www.umweltbundesamt.de/en/topics/health/assessing-
environmentally-related-health-risks/german-environmental-survey-geres)  

• German Federal Institute for Risk Assessment 
(https://www.bfr.bund.de/en/home.html)  

• HBM4EU (https://www.hbm4eu.eu/), including the video from the “International 
Hybrid Conference on Human Biomonitoring for Science and Chemical Policy.”   

• Health Canada (https://www.canada.ca/en/health-canada.html)  
• International Society of Exposure Science (http://ises2020ca.org/program/)  
• Japan Environment and Children Study (http://www.env.go.jp/chemi/ceh/en/)  
• Minnesota Biomonitoring Program 

(https://www.health.state.mn.us/communities/environment/biomonitoring/inde
x.html)  

• NHANES (https://www.cdc.gov/nchs/nhanes/index.htm)  
• USEPA, including ExpoBox https://www.epa.gov/expobox/exposure-assessment-

tools-approaches-exposure-reconstruction-biomonitoring-and-reverse and 

https://www.aphl.org/programs/environmental_health/nbn/Pages/default.aspx
https://www.aphl.org/programs/environmental_health/nbn/Pages/default.aspx
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https://www.cdc.gov/biomonitoring/index.html
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https://www.eea.europa.eu/
https://www.umweltbundesamt.de/en/topics/health/assessing-environmentally-related-health-risks/german-environmental-survey-geres
https://www.umweltbundesamt.de/en/topics/health/assessing-environmentally-related-health-risks/german-environmental-survey-geres
https://www.bfr.bund.de/en/home.html
https://www.hbm4eu.eu/
https://www.canada.ca/en/health-canada.html
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http://www.env.go.jp/chemi/ceh/en/
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https://www.epa.gov/expobox/exposure-assessment-tools-approaches-exposure-reconstruction-biomonitoring-and-reverse


America’s Children and the Environment (US EPA) 
(https://www.epa.gov/americaschildrenenvironment/ace-biomonitoring)  

• WHO (https://www.who.int/) 
 
These sites were searched for potential case studies:  

• German Environmental Survey 
(https://www.umweltbundesamt.de/en/topics/health/assessing-
environmentally-related-health-risks/german-environmental-survey-geres)  

• Health Canada (https://www.canada.ca/en/health-canada.html)  
• Japan Environment and Children Study (http://www.env.go.jp/chemi/ceh/en/)  
• USEPA, including ExpoBox https://www.epa.gov/expobox/exposure-assessment-

tools-approaches-exposure-reconstruction-biomonitoring-and-reverse and 
America’s Children and the Environment (US EPA) 
(https://www.epa.gov/americaschildrenenvironment/ace-biomonitoring)  

 
For each website, the search function within that site was used to search for guidance 
documents and articles. The following search terms were used:  

• Biomonitoring 
 
Relevant references were extracted from this search. For websites where the term 
“biomonitoring” received more than 100 hits, the search was further narrowed using all the 
following search terms in succession.   

• Biomonitoring AND exposure assessment 
• Biomonitoring AND pharmacokinetic 
• Biomonitoring AND toxicokinetic 
• Biomonitoring AND methods 
• Biomonitoring AND reverse dosimetry 
• Biomonitoring AND external exposure 

 
In each search, the information on the search page(s) was screened for relevance. If a 
research paper appeared on a search page, the abstract was screened to determine 
relevance. This was done by continuously searching page by search page until none of the 
hits on a given page were relevant.  
 
Additional targeted searches were conducted for a few websites that were of particular 
interest, either because of prior knowledge of the existence of guidance documents from 
the respective organizations, or because of an expectation that the website would have 
relevant information. The search terms used for each of these supplemental searches were 
as follows:  

• HBM4EU: Exposure reconstruction AND hbm data  
• ATSDR (searched toxicological profiles on benzene, phenol and lead for data on 

toxicokinetic parameters useful for reverse dosimetry assessment, as illustrative 
cases).  

https://www.epa.gov/americaschildrenenvironment/ace-biomonitoring
https://www.who.int/
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https://www.epa.gov/americaschildrenenvironment/ace-biomonitoring


• CDC site: “human samples” AND collection 
• WHO: human exposure assessment 

o The original citation from the WHO site was in Korean, but the citation was 
used to find the original IPCS Environmental Health Criteria (EHC) document 
on Human Exposure Assessment.  

Tree Search (October-December 2020) 
Three types of “seed materials” were used for the tree search. The goal of this searching 
was to identify articles that would either provide useful general information for the 
guidance document or would be useful as case studies. The first approach used PowerPoint 
files of presentations that that were either initially provided by CPSC staff or were 
identified from searches of the authoritative websites. These presentations were used only 
for backward searching of cited references:  

Aylward, L., Hays, S. (2013). Biomonitoring equivalents and interpretation: Current 
activities [PowerPoint slides]. Summit Toxicology, LLP. Bozeman, MN. Retrieved 
from 
https://www.umweltbundesamt.de/sites/default/files/medien/355/dokumente/a
ylward_and_hays_2013_biomonitoring_equivalents_and_interpretation.pdf 
Aylward, L., Hays, S. (2015). Biomonitoring equivalents – Current activities and use 
of toxicokinetic modeling [PowerPoint slides]. Summit Toxicology, LLP. Bozeman, 
MN. Retrieved from 
https://www.umweltbundesamt.de/sites/default/files/medien/355/dokumente/a
ylward_and_hays_2015_biomonitoring_equivalents_current_activities_and_use_of_to
xicokinetic_modeling_0.pdf  
Calafat, A. (2011). Biomonitoring for exposure assessment: Challenges and future 
directions [PowerPoint slides]. Centers for Disease Control. Sacramento, CA. 
Retrieved from 
https://biomonitoring.ca.gov/sites/default/files/downloads/CalafatSGPNov2011.p
df  
Fillol, C., & Vandentorren, S. (n.d.). National human biomonitoring programme in 
France: Selection of substances and prioritization of biomarkers [PowerPoint 
slides]. Institut de Veille Sanitaire. Retrieved from 
https://www.umweltbundesamt.de/sites/default/files/medien/378/dokumente/cl
emence_fillol_national_human_biomonitoring_programme_in_france_selection_of_su
bstances_and_prioritization_of_biomarkers.pdf 
Nong, A. (2016). Pharmacokinetic modeling of health and exposure measures to 
support health risk interpretations. Health Canada. Retrieved from 
https://www.umweltbundesamt.de/sites/default/files/medien/378/dokumente/a
ndy_nong_pharmacokinetic_modeling_of_health_and_exposure_measures_to_suppor
t_health_risk_interpretations.pdf 
Wambaugh, J. (2017). Fun with high throughput toxicokinetics. Environmental 
Protection Agency. Retrieved from 
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCCT&dirEntryId=3378
39 
Zidek, A. (2016). Use of biomonitoring data under Canada’s chemicals management 
plan. Existing Substances Risk Assessment Bureau. Retrieved from 



https://www.umweltbundesamt.de/sites/default/files/medien/378/dokumente/a
ngelika_zidek_use_of_biomonitoring_data_under_canadas_chemicals_management_p
lan.pdf  

 
The second approach to tree searching used conference proceedings that were identified in 
the review of the authoritative websites. Backwards searching was conducted with the 
following conference proceedings to identify relevant articles:  

State of California Environmental Contaminant Biomonitoring Program Scientific 
Guidance Panel. 
https://dev.biomonitoring.ca.gov/sites/default/files/downloads/SGPTrans120400
8.pdf 
International Hybrid Conference HBMC2020- Human Biomonitoring for Science and 
Chemical Policy.  https://www.umweltbundesamt.de/en/topics/health/assessing-
environmentally-related-health-risks/human-biomonitoring-for-science-chemical-
policy  

 
The third approach involved backward and forward searching from a limited number of 
key articles. These key articles were identified based on articles identified by the CPSC staff, 
relevant guidance documents found during the authoritative web search, and literature 
review articles that discussed an important overarching topic. Searching was done as an 
iterative process. Backward searching was conducted by reviewing the text and reference 
list of these publications. Forward searching was conducted using the Web of Science “cited 
by” feature. The following references were used as seed articles. Additional information on 
the screening criteria is provided below, after the list of articles screened.  

Apel, P., & Ougier, E. (2017). 1st substance-group specific derivation of EU-wide 
health-based guidance values. HBM4EU: Deliverable report WP 5- Translation of 
results into policy. Retrieved from https://www.hbm4eu.eu/wp-
content/uploads/cmdm/3390/1524411798_HBM4EU_D5.2_1st-substance-group-
specific-derivation-of-EU-wide-health-based-guidance-values.pdf 
Aylward, L. L., Hays, S. M., & Zidek, A. (2017). Variation in urinary spot sample, 24 h 
samples, and longer-term average urinary concentrations of short-lived 
environmental chemicals: implications for exposure assessment and reverse 
dosimetry. Journal of exposure science & environmental epidemiology, 27(6), 582-
590. 
Aylward, L. L., Hays, S. M., Smolders, R., Koch, H. M., Cocker, J., Jones, K., ... & Bevan, R. 
(2014). Sources of variability in biomarker concentrations. Journal of Toxicology 
and Environmental Health, Part B, 17(1), 45-61. 
Berman, T., Goldsmith, R., Levine, H., & Grotto, I. (2017). Human biomonitoring in 
Israel: Recent results and lessons learned. International journal of hygiene and 
environmental health, 220(2), 6-12. 
Calafat, A. M., Ye, X., Wong, L. Y., Bishop, A. M., & Needham, L. L. (2010). Urinary 
concentrations of four parabens in the US population: NHANES 2005–2006. 
Environmental health perspectives, 118(5), 679-685. 
Carlson, K. R., & Garland, S. E. (2015). Estimated phthalate exposure and risk to 
pregnant women and women of reproductive age as assessed using four NHANES 
biomonitoring data sets (2005/2006, 2007/2008, 2009/2010, 2011/2012). 



Consumer Product Safety Commission Directorate for Hazard Identification and 
Reduction. Retrieved from https://www.cpsc.gov/s3fs-
public/Estimated%20Phthalate%20Exposure%20and%20Risk%20to%20Women
%20of%20Reproductive%20Age%20as%20Assessed%20Using%202013%202014
%20NHANES%20Biomonitoring%20Data.pdf 
Clark, K. E., David, R. M., Guinn, R., Kramarz, K. W., Lampi, M. A., & Staples, C. A. 
(2011). Modeling human exposure to phthalate esters: a comparison of indirect and 
biomonitoring estimation methods. Human and Ecological Risk Assessment: An 
International Journal, 17(4), 923-965. 
Egeghy, P. P., & Lorber, M. (2011). An assessment of the exposure of Americans to 
perfluorooctane sulfonate: a comparison of estimated intake with values inferred 
from NHANES data. Journal of exposure science & environmental epidemiology, 
21(2), 150-168. 
Esteban, M., & Castaño, A. (2009). Non-invasive matrices in human biomonitoring: a 
review. Environment international, 35(2), 438-449. 
Faure, S., Noisel, N., Werry, K., Karthikeyan, S., Aylward, L. L., & St-Amand, A. (2020). 
Evaluation of human biomonitoring data in a health risk based context: An updated 
analysis of population level data from the Canadian Health Measures Survey. 
International journal of hygiene and environmental health, 223(1), 267-280. 
Hartmann, C., Uhl, M., Weiss, S., Koch, H. M., Scharf, S., & König, J. (2015). Human 
biomonitoring of phthalate exposure in Austrian children and adults and cumulative 
risk assessment. International journal of hygiene and environmental health, 218(5), 
489-499. 
Hays, S. M., Aylward, L. L., & Blount, B. C. (2015). Variation in urinary flow rates 
according to demographic characteristics and body mass index in NHANES: 
potential confounding of associations between health outcomes and urinary 
biomarker concentrations. Environmental health perspectives, 123(4), 293-300. 
HEALS (2015). Guidelines for appropriate “biomarker of exposure” selection for 
EWAS studies. Deliverable 4.2, WP4 Human Biomonitoring. Retrieved from 
http://www.heals-eu.eu/wp-content/uploads/2013/08/HEALS_D4.2.pdf  
Horvat, M., Sarigiannis, D., Handakas, E., Karakitsios, S., & Gotti, A. (2017). Report on 
the optimal methodology for exposure reconstruction from HBM data. HBM4EU: 
Deliverable Report WP 12-from HBM to exposure. Retrieved from 
https://www.hbm4eu.eu/wp-content/uploads/2018/09/Deliverable-12.2-Report-
on-the-optimal-methodology-for-exposure-reconstruction-from-HBM-data.pdf 
Joas, R., Casteleyn, L., Biot, P., Kolossa-Gehring, M., Castano, A., Angerer, J., ... & 
Horvat, M. (2012). Harmonised human biomonitoring in Europe: activities towards 
an EU HBM framework. International journal of hygiene and environmental health, 
215(2), 172-175. 
Jongeneelen, F. J., & Berge, W. F. T. (2011). A generic, cross-chemical predictive 
PBTK model with multiple entry routes running as application in MS Excel; design of 
the model and comparison of predictions with experimental results. Annals of 
occupational hygiene, 55(8), 841-864. 
Manno, M., Sito, F., & Licciardi, L. (2014). Ethics in biomonitoring for occupational 
health. Toxicology letters, 231(2), 111-121. 



National Research Council (2006). Human Biomonitoring for Environmental 
Chemicals. Washington, DC: The National Academies Press. Retrieved from 
https://doi.org/10.17226/11700 
Paustenbach, D., & Galbraith, D. (2006). Biomonitoring: Is body burden relevant to 
public health?. Regulatory Toxicology and Pharmacology, 44(3), 249-261. 
Pearce, R. G., Setzer, R. W., Strope, C. L., Wambaugh, J. F., & Sipes, N. S. (2017). Httk: R 
package for high-throughput toxicokinetics. Journal of statistical software, 79(4), 1. 
Pleil, J. D., & Sobus, J. R. (2013). Estimating lifetime risk from spot biomarker data 
and intraclass correlation coefficients (ICC). Journal of toxicology and 
environmental health, part A, 76(12), 747-766. 
Pleil, J. D., & Sobus, J. R. (2016). Estimating central tendency from a single spot 
measure: A closed-form solution for lognormally distributed biomarker data for risk 
assessment at the individual level. Journal of Toxicology and Environmental Health, 
Part A, 79(18), 837-847. 
Polkowska, Ż., Kozłowska, K., Namieśnik, J., & Przyjazny, A. (2004). Biological fluids 
as a source of information on the exposure of man to environmental chemical 
agents. Critical reviews in analytical chemistry, 34(2), 105-119. 
Schulte, P.A., and G. Talaska. 1995. Validity criteria for the use of biological markers 
of exposure to chemical agents in environmental epidemiology. Toxicology 101(1-
2):73-88 
Shen, H., Main, K. M., Virtanen, H. E., Damggard, I. N., Haavisto, A. M., Kaleva, M., ... & 
Schramm, K. W. (2007). From mother to child: investigation of prenatal and 
postnatal exposure to persistent bioaccumulating toxicants using breast milk and 
placenta biomonitoring. Chemosphere, 67(9), S256-S262. 
Sobus, J. R., DeWoskin, R. S., Tan, Y. M., Pleil, J. D., Phillips, M. B., George, B. J., ... & 
Edwards, S. W. (2015). Uses of NHANES biomarker data for chemical risk 
assessment: trends, challenges, and opportunities. Environmental health 
perspectives, 123(10), 919-927. 
Steckling, N., Gotti, A., Bose-O’Reilly, S., Chapizanis, D., Costopoulou, D., De Vocht, F., 
... & Jagodic, M. (2018). Biomarkers of exposure in environment-wide association 
studies–Opportunities to decode the exposome using human biomonitoring data. 
Environmental research, 164, 597-624. 
Tan, C., Dary, C., Chang, D., Ulrich, E., Van Emon, J., Xue, J., ... & Zartarian, V. G. (2013). 
Biomonitoring—An Exposure Science Tool for Exposure and Risk Assessment. US 
Environmental Protection Agency, EPA/600/R-12/039. Retrieved from 
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=2437
31  
Tay, J. H., Sellström, U., Papadopoulou, E., Padilla-Sánchez, J. A., Haug, L. S., & de Wit, 
C. A. (2019). Serum concentrations of legacy and emerging halogenated flame 
retardants in a Norwegian cohort: Relationship to external exposure. Environmental 
research, 178, 108731. 
US EPA (2013). Interpreting biomonitoring data and using pharmacokinetic 
modeling in exposure assessment. Risk Assessment Training and Experience 
Program (RATE), EXA 408. Retrieved from 
https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=514937 



US EPA (2020b). Risk Evaluation for Cyclic Aliphatic Bromide Cluster (HBCD). Office 
of Chemical Safety and Pollution Prevention, EPA Document #740-R1-8006. 
Retrieved from https://www.epa.gov/assessing-and-managing-chemicals-under-
tsca/risk-evaluation-cyclic-aliphatic-bromide-cluster-hbcd 
Vincente, J., Buekers, J., Bessems, J., David, M. (2019). Case-study report on HBM-
indicators. HBM4EU: Deliverable Report WP 12-from HBM to exposure. Retrieved 
from https://www.hbm4eu.eu/work-packages/additional-deliverable-5-3-case-
study-report-on-hbm-indicators/ 
Vogel, N., Conrad, A., Apel, P., Rucic, E., & Kolossa-Gehring, M. (2019). Human 
biomonitoring reference values: Differences and similarities between approaches 
for identifying unusually high exposure of pollutants in humans. International 
Journal of Hygiene and Environmental Health, 222(1), 30-33. 
World Health Organization, International Labour Organization, & Inter-Organization 
Programme for the Sound Management of Chemicals. (2008). Uncertainty and data 
quality in exposure assessment (Vol. 6). World Health Organization. Retrieved from 
https://apps.who.int/iris/handle/10665/44017 
Wilson, H. K., & Monster, A. C. (1999). New technologies in the use of exhaled breath 
analysis for biological monitoring. Occupational and environmental medicine, 
56(11), 753-757. 

 
Each article was screened for relevance for use in the guidance document. Studies were 
screened to identify ones that included any of the following information:  

• Exposure calculations based on biomarker data, with documentation of biomarker 
and toxicokinetic data used 

• A description of choices for selecting an appropriate biomarker or biological matrix 
for a chemical substance 

• A review of the literature on the use of human biomonitoring data  
• A description of interindividual variability in a sample population or providing 

general population age or sex-specific default values 
• A description of the use of human, animal, in vitro, modeling, or read-across 

toxicokinetic data and their use in interpreting human biomonitoring studies 
• A description of methods for differentiating inter- and intra-individual variability in 

using biomonitoring data 
 
The initial project plan envisioned screening literature to identify two types of relevant 
references: (1) methods documents and (2) examples of use of HBM data for estimating 
exposure. We envisioned using the former group of references to identify criteria for 
evaluating potential case studies based on:  

a. Whether the HBM data and/or toxicokinetic data used in the examples are reliable 
and relevant on their own merits, and   

b. Whether the reported HBM data and/or toxicokinetic data used in the examples are 
reliable and relevant for use in estimating human exposure.  

However, the number of potential case studies identified where reverse dosimetry was 
used was sufficiently small that this distinction did not end up being useful. Instead, the 



references were reviewed to identify the type and source of (1) biomonitoring data, (2) 
toxicokinetic data, and (3) anatomy and physiology data. Based on this information, 
consideration of study quality and data quality based on the two criteria in the previous 
paragraph, as well as consideration of the half-life category for each chemical (in order to 
identify a range of half-lives), a mix of case studies was identified that reflects a variety of 
combinations of data types. 
 
Studies Identified by Experts  
Multiple interviews of experts in the biomonitoring field were conducted February and 
March 2021. Interviewers recommended articles that pertained to using reverse dosimetry 
to estimate external exposures.  
The following experts were interviewed: 

• Scott Hancock (Health Canada), Kristin Macey (Health Canada), Devika Poddalgoda 
(Health Canada), Andy Nong (Health Canada) – February 11, 2021 

• Chris Brinkerhoff (US EPA), Erin Hines (US EPA), Peter Egeghy (US EPA), Andrea 
Pfahles-Hutchens (US EPA) – February 23, 2021 

• Jon Sobus (US EPA) and Joachim Pleil (former US EPA) – March 11, 2021 
 
Numerous articles were recommended by the interviewees. These articles were scanned 
for useful information and were evaluated as potential case studies. The following articles 
were recommended by interviewees, many of which had previously been identified in the 
other phases of the literature searching. These articles were then screened for utility of the 
information and for their potential utility as case studies: 

Angerer, J., Bird, M. G., Burke, T. A., Doerrer, N. G., Needham, L., Robison, S. H., ... & 
Zenick, H. (2006). Strategic biomonitoring initiatives: moving the science forward. 
Toxicological Sciences, 93(1), 3-10. 
 
Bastiaensen, M., Gys, C., Malarvannan, G., Fotache, M., Bombeke, J., Bamai, Y. A., ... & 
Covaci, A. (2021). Short-term temporal variability of urinary biomarkers of 
organophosphate flame retardants and plasticizers. Environment International, 146, 
106147. 
 
Caudill, S. P. (2015). Confidence interval estimation for pooled-sample biomonitoring 
from a complex survey design. Environment international, 85, 40-45. 
 
Egeghy, P. P., & Lorber, M. (2011). An assessment of the exposure of Americans to 
perfluorooctane sulfonate: a comparison of estimated intake with values inferred from 
NHANES data. Journal of exposure science & environmental epidemiology, 21(2), 150-
168. 
 
Egeghy, P. P., Cohen Hubal, E. A., Tulve, N. S., Melnyk, L. J., Morgan, M. K., Fortmann, R. C., 
& Sheldon, L. S. (2011). Review of pesticide urinary biomarker measurements from 
selected US EPA children’s observational exposure studies. International journal of 
environmental research and public health, 8(5), 1727-1754. 
 



Kim, D., Andersen, M. E., Chao, Y. C. E., Egeghy, P. P., Rappaport, S. M., & Nylander-
French, L. A. (2007). PBTK modeling demonstrates contribution of dermal and 
inhalation exposure components to end-exhaled breath concentrations of naphthalene. 
Environmental health perspectives, 115(6), 894-901. 
 
Lee, S., Tan, Y. M., Phillips, M. B., Sobus, J. R., & Kim, S. (2017). Estimating 
methylmercury intake for the general population of South Korea using physiologically 
based pharmacokinetic modeling. Toxicological Sciences, 159(1), 6-15. 
 
Lorber, M., & Egeghy, P. P. (2011). Simple intake and pharmacokinetic modeling to 
characterize exposure of Americans to perfluoroctanoic acid, PFOA. Environmental 
science & technology, 45(19), 8006-8014. 
 
Morgan, M. K., Sobus, J. R., Barr, D. B., Croghan, C. W., Chen, F. L., Walker, R., ... & Clifton, 
M. S. (2016). Temporal variability of pyrethroid metabolite levels in bedtime, morning, 
and 24-h urine samples for 50 adults in North Carolina. Environmental research, 144, 
81-91. 
 
Morgan, M. K., Nash, M., Barr, D. B., Starr, J. M., Clifton, M. S., & Sobus, J. R. (2018). 
Distribution, variability, and predictors of urinary bisphenol A levels in 50 North 
Carolina adults over a six-week monitoring period. Environment international, 112, 85-
99. 
 
Phillips, M. B., Sobus, J. R., George, B. J., Isaacs, K., Conolly, R., & Tan, Y. M. (2014). A new 
method for generating distributions of biomonitoring equivalents to support exposure 
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Bibliographic database search 
A formal literature search was done between January and February 2021, to find potential 
case studies and other articles that would be useful in developing the guidance for using 
reverse dosimetry data to estimate exposure. The searches were conducted using Google 
Scholar, UC library, and Web of Science. The following search terms were used, with each 
set of search terms being used for each of the bibliographic databases.  

• “simple pharmacokinetic model” AND “QSAR” AND “exposure” 
• “simple pharmacokinetic model” AND “IVIVE” AND “exposure” 
• “simple pharmacokinetic model” AND animal AND “exposure” 
• Compartmental PK model AND “exposure” AND “QSAR” 
• Compartmental PK model AND “exposure” AND “IVIVE” 
• Compartmental PK model AND “exposure” AND animal 
• “compartmental model” AND “reverse dosimetry” 
• “reverse dosimetry” AND “exposure” AND “QSAR” 
• “reverse dosimetry” AND “exposure” AND “IVIVE” 
• “reverse dosimetry” AND “exposure” AND animal 
• Biological monitoring AND fatty tissue 
• Occupation* AND biomonitor* AND “daily intake” 

https://www.epa.gov/sites/production/files/2020-08/documents/risk_evaluation_for_1-bromopropane_n-propyl_bromide.pdf
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https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/risk-evaluation-cyclic-aliphatic-bromide-cluster-hbcd


• Toxicokinetic* AND animal AND biomonitor* 

Specific search terms were also used to find case studies specific to consumer products. A 
total of 40 useful references were found using these search terms. The following search 
terms were used in Google Scholar, UC library, and PubMed:  

• Consumer AND biomonitor* AND “daily intake” 
• Consumer AND biomonitor* AND “reverse dosimetry” 
• Consumer AND biomonitor* AND “exposure reconstruction” 

 
Screening search results to identify potential case studies 
Each article found from literature searching was scanned to see if it could qualify as a 
potential case study. To qualify as a potential case study, the following must apply: 

• The study must utilize reverse dosimetry to estimate human exposure based on 
biomonitoring data 

• The study must identify the parameters used and the source of each parameter (or 
how it was derived)  
 

Case studies were eliminated from consideration if:  
• The study utilized PBPK modelling approaches that are not the exposure conversion 

factor approach  
• The study did not adequately address limitations (professional judgment was used 

to determine this). For example, Zhang et al. (2020) did not adequately address how 
using a pig Fue may impact the results of the reverse dosimetry section of their 
study. Therefore, it was excluded from consideration.  

 
The broader search was supplemented by targeted searching to identify studies relevant to 
the use of in vitro toxicokinetic data, particularly in the context of in vitro to in vivo 
extrapolation. This searching was based on key authors in the field (Wambaugh, Wetmore, 
Ring), as well as the terms httk and IVIVE. 
 
Using these general selection criteria, 56 potential case studies were identified in the 
literature search. A total of 367 potential references were found that provided information 
relevant to the guidance document, of which 110 were cited in this document. 
  



Appendix D –Expert Interviews  
 
Several interviews of governmental scientists were conducted in the course of developing 
this guidance. The purpose of the interviews was to better understand how biomonitoring 
data and reverse dosimetry are being used in exposure assessments by the respective 
organizations, to identify issues associated with the application, and to obtain additional 
specific examples illustrating approaches used.  
 
Interviews were conducted with the following groups: 
 

• Health Canada - February, 2021:  Scott Hancock, Kristin Macey, Devika Poddalgoda, 
Andy Nong 

 
• US Environmental Protection Agency, February, 2021:  Chris Brinkerhoff, Erin 

Hines, Peter Egeghy, Andrea Pfahles-Hutchens 
 

• US Environmental Protection Agency, March, 2021: Joachim Pleil (former US EPA), 
Jon Sobus 

 
The following questions were used as starting points for the interviews. Additional follow-
up questions depended on the specific responses received. 
  
--Can you provide example(s) of how you or your organization has estimated human 
exposure from human biomonitoring data and toxicokinetic data?  (We have been doing a 
lot of digging into the literature, as I’ll explain more on the call. Areas where we are 
particularly lacking in examples are for inhalation exposure and methods when we don’t 
have human toxicokinetic data, particularly using in vitro and read-across methods, 
although other examples are also welcome.) 
--In these examples, what key issues did you consider in interpreting the human 
biomonitoring data and interpreting the available toxicokinetic data? 
--What were some of the challenges encountered and how did you address these 
challenges?  
--What lessons did you learn for the chemical or class? 
--What warnings do you have on pitfalls to avoid? 
 
The results of the interviews were used to identify relevant publications and assessments 
to review for the methods discussed in the guidance. Information gained in the interviews 
was used to inform the content of this guide. We are grateful to the scientists who we 
interviewed for sharing their time and knowledge. 
 
  



Appendix E – Definitions related to this Guide  
 
The intended audience for this guide is practitioners with a working knowledge of 
biomonitoring data, toxicokinetic data, and exposure assessment. In several places 
throughout the guide, terms are used to characterize or group different kinds of chemicals, 
data, or models related to the use of Biomonitoring. Rather than define each term as it 
comes up throughout the guide, all of these terms were collected in this Appendix. For 
some terms, specific and citable definitions are available. In these cases, the definition is 
followed by a number that refers to the source list at the end of this glossary. For other 
terms, there is a more generic guideline or rule-of-thumb associated with these terms.  
 
Chemical Specific Terms:  
Endogenous - Naturally occurring chemicals that occur within the human body 
Exogenous - Chemicals that have a non-human or external source.  
Lipid soluble, also lipophilic - Chemicals with a logKoW > 4 (23)  
Metabolite –  Chemical compound that results from a chemical reaction in the body. A 
substance produced directly by a biotransformation of a chemical. Often, a chemical that enters 
the body is rapidly metabolized or otherwise difficult to measure or distinguish from external 
contamination. A metabolite may be more stable and also may be eliminated in urine, making it 
more accessible and easier to measure. (22) 
Moderately-excreted compounds- Chemicals with an elimination half-life in the human body 
of 8-36 hours.  
Non-volatile compound - Chemicals with a boiling point > 400 degrees Celsius (17; exact 
cutoff varies by organization) 
Parent chemical - Chemicals prior to any metabolism; some parent chemicals may retain their 
chemical structure and integrity as they travel through the human body. 
Rapidly-excreted, also short-lived compounds - Chemicals with an elimination half-life in the 
human body less than about 8 hours.  
Semi-volatile organic compound (SVOC) - Chemicals with a boiling point between 250 and 
400 degrees Celsius (17; exact cutoff varies by organization) 
Slowly-excreted, also long-lived compounds - Chemicals with an elimination half-life in the 
human body of > 36 hours. This is a shorter half-life than often used to define this category, but 
is a pragmatic definition relative to typical biomonitoring sampling times.  
Volatile organic compound (VOC) - Organic compounds that evaporate readily into the air (5). 
Chemicals with a boiling point < 250 degrees Celsius (17; exact cutoff varies by organization) 
Water Soluble Compound - Chemicals with a logKoW < 1 or water solubility >10 mg/L 
 
Exposure Assessment Terms:  
Average daily dose, also intake, also applied dose - Dose rate averaged over a pathway-
specific period of exposure expressed as a daily dose on a per-unit-body-weight basis. The ADD 
is usually expressed in terms of mg/kg-day or other mass-time units (2) 
Biomonitoring - Systematic standardized measurement of concentration of a substance or its 
metabolites in human tissues (such as blood, urine, milk) (4); a method used to assess human 
exposure to chemicals by measuring a chemical, its metabolite, or a reaction product in human 
tissues or specimens, such as blood and urine (19). 



Environmental monitoring - The process of sampling and analyzing the occurrence of 
chemicals in external media, such as air, water, food, or dust 
Exposure pathway - The course an agent takes from the source to the target. (3) The route a 
substance takes from its source (where it began) to its end point (where it ends), and how people 
can come into contact with (or get exposed to) it. An exposure pathway has five parts: a source 
of contamination (such as an abandoned business); an environmental media and transport 
mechanism (such as movement through groundwater); a point of exposure (such as a private 
well); a route of exposure (eating, drinking, breathing, or touching), and a receptor population 
(people potentially or actually exposed). When all five parts are present, the exposure pathway is 
termed a completed exposure pathway. (5) 
Exposed population or subpopulation - Also called receptor, a group of individuals who come 
into contact with the chemical of interest 
Exposure source - The origin or starting point of a chemical; an object that releases the 
chemical into the environment; the origin of an agent for the purposes of an exposure 
assessment. (20) 
Exposure scenario - A combination or description of an exposure source, exposure pathway, 
and exposed population (at a minimum) that define the conditions or situations where exposures 
occur. (3) 
Exposure factors, and activity patterns - Human physiological and behavioral conditions that 
are used to calculate an average daily dose from an external media concentration. Examples of 
exposure factors include body weight, ingestion rates, inhalation rates, and skin-surface-area. 
Examples of activity patterns include time spent awake, time spent indoors, time spent at 
background vs. locations with elevated exposures.  
External media, also medium - The material that the source chemical substance is contained 
within, such as water, soil, dust, food, consumer products. Some external media can also be 
characterized as exposure sources while others are better characterized as exposure pathways.   
Internal dose, also uptake - The amount of a chemical substance that has been absorbed across 
absorption barriers per bodyweight per day. (1) 
Personal monitoring - The process of sampling exposure in the immediate vicinity of an 
absorption barrier, such as measuring the concentration of air in an individual’s breathing zone.  
Source contribution - The relative contribution of one exposure source compared to another or 
compared to total exposure. This can be displayed in rank-order or as percent of the whole if 
multiple sources in an aggregate exposure assessment are quantified. 
 
Terms specific to Reverse Dosimetry and Biomonitoring:  
24-hour sample - Samples collected in 24-hour intervals. (10) 
Absorption - The process of taking in. For a person or an animal, absorption is the process of a 
substance getting into the body through the eyes, skin, stomach, intestines, or lungs. (5) 
Allometric scaling - Scaling of physiological rates or quantities to relative growth and size 
(mass or volume) of one animal species relative to another animal species. The relationship is 
generally written as A = a(B)k, where A is the physiological process, B is a measure of the size 
of the organism (e.g., body weight) and a and k are constants (7) 
Biological matrix – A discrete material of biological origin that can be sampled and processed 
in a reproducible manner. Examples are blood, serum, plasma, urine, feces, saliva, sputum, and 
various discrete tissues. (21) 



Biomarker - (Short for biological marker) an objective measure that captures what is happening 
in a cell or an organism at a given moment. May measure exposure, response, or susceptibility. 
(8) 
Clearance – The process of removal of a chemical from the body. This includes renal clearance 
- the volume of blood or plasma that could be freed of a specified constituent in a specified time 
(usually one minute) by excretion of the constituent into the urine through the kidneys (16) and 
metabolic clearance – the conversion of the parent chemical into one or more of its metabolites. 
Compartmental model – A mathematical description of the flow of a chemical through the 
body. May contain a central compartment that represents the whole body (or plasma) where 
distribution occurs nearly instantaneously (one-compartment model) or an additional 
compartment (two-compartment model) where the distribution is affected by additional 
processes such as metabolism or sequestration into fat. PBPK models are an example of more 
complex compartmental models. Compartment models help characterize a chemical’s kinetic 
behavior, and they are useful in deriving values for a chemical or drug’s distribution in the body 
or clearance from the blood (i.e., half-life) (18) 
Creatinine - A white crystalline strongly basic compound C4H7N3O formed from creatine and 
found especially in muscle, blood, and urine (15). Creatinine excretion is often used to normalize 
chemical concentrations in urine, because it is roughly constant on a daily basis and not affected 
by how concentrated the urine is, although creatinine excretion does vary with age, size, body 
weight, gender and race/ethnicity. 
Distribution - Movement of a substance from the site of entry to other parts of the body. (9) 
Elimination - The toxicokinetic process responsible for the removal or expulsion of a substance 
from the body. (9) 
Forward dosimetry – (Mathematical calculations by which) an external exposure associated 
with a critical health effect or exposure guidance values (for example, presented in mg/kg 
bw/day) is converted to an internal dose. (6) 
Half-life - The time it takes for half the original amount of a substance to disappear. In the 
context of biomonitoring, it is the time required for half of the original dose to be removed from 
the body, either as the parent compound or metabolite, i.e., the elimination half-life.  
Intraclass correlation coefficient (ICC) - Calculated as the ratio of the between-person 
variance to the total variance (within + between). The values vary between 0 and 1. Higher 
values (greater than 0.5) indicate that variance between individuals is greater than variance 
within individuals and low ICC values indicate within-person variation is large compared to 
between-person variation. (10) 
Lipid - A large and diverse group of organic compounds that contain primarily carbon and 
hydrogen atoms with a lesser amount of oxygen. Most lipids are insoluble in water but will 
readily dissolve in other lipids and in organic solvents. (9) 
Lipid weight – Measurements that are based on the lipid fraction of the weight of the sample (1) 
Mass balance - Method for evaluating kinetics of a chemical by accounting for all (major) 
inputs and outputs (intake and elimination) of a chemical. Ensuring mass balance allows input 
(dose) to be calculated based on measured output.  
Metabolism - The conversion or breakdown of a substance from one form to another by a living 
organism. (5) 
Physiologically-based pharmacokinetic (PBPK) model - A model that estimates the dose to a 
target tissue or organ by taking into account the rate of absorption into the body, distribution 



among target organs and tissues, metabolism, and excretion on the basis of interplay among 
critical physiological, physicochemical, and biochemical determinants (18) 
Plasma - The non-cellular, fluid portion of whole blood. (9) 
Reverse dosimetry – The process of back-calculating the exposure to a chemical that would be 
consistent with a measured biomonitoring level in humans. 
Serum - The clear yellowish fluid that remains from blood plasma after fibrinogen, prothrombin, 
and other clotting factors have been removed by clot formation (14) 
Simple pharmacokinetic model, also one-compartment model – A model that estimates the 
change in concentration in one compartment over time given a specified exposure regime. It 
takes what comes in, or dose; subtracts what goes out via an elimination rate constant, k; and 
calculates the change in concentration of a chemical over time. (11) 
Spot sample - Samples that are collected at a single point in time 
Toxicodynamics - The determination and quantification of the sequence of events at the cellular 
and molecular levels leading to a toxic response to an environmental agent (sometimes referred 
to as pharmacodynamics). (2) 
Toxicokinetics - The determination and quantification of the time course of absorption, 
distribution, biotransformation, and excretion of chemicals (sometimes referred to as 
pharmacokinetics) (2) 
Urine - Waste material that is secreted by the kidney, is rich in end products (as urea, uric acid, 
and creatinine) of protein metabolism together with salts and pigments, and forms a clear amber 
and usually slightly acid fluid. (13) 
Volume of distribution - The volume of body fluid in which a compound is apparently 
distributed. It may consist of plasma, interstitial fluid, and intercellular fluid. (9) 
Wet weight – Measurements that are based on the wet (or whole) weight of the sample. This in 
contrast to dry weight. (1) 
Whole-blood - Blood with all its components (as white and red blood cells, platelets, and 
plasma) intact that has been withdrawn from a donor into an anticoagulant solution. (12) 
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